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Nils Kroell a,b,* , Eric Thor a , Lieve Göbbels a , Paula Schönfelder a, Xiaozheng Chen a,b

a Department of Anthropogenic Material Cycles, RWTH Aachen University, Wuellnerstr. 2, Aachen D-52062, Germany
b STADLER Anlagenbau GmbH, Max-Planck-Straße 21, Altshausen D-88361, Germany

A R T I C L E  I N F O

Keywords:
Machine learning
Deep learning
Inline sensor-based material flow characteriza
tion
Circular economy
Sieve analysis
Recycled concrete aggregates
Explainable artificial intelligence (XAI)

A B S T R A C T

To enhance sustainability in the construction industry, substituting primary with recycled aggregates from 
construction and demolition waste (CDW) is essential. However, the necessary quality assessment of recycled 
aggregates, especially their particle size distribution (PSD), through sampling and manual sieving is time- 
consuming and prone to sampling errors due to the heterogeneity of CDW waste and fluctuating material 
flows combined with small sampling and manual sieving volumes. Here, we introduce a novel inline monitoring 
approach using convolutional neural networks (CNNs) to estimate PSDs from inline 3D laser triangulation 
(3DLT) sensor data of both primary and recycled aggregate particles. Analyzing 174,220 particles across nine size 
classes with a dual camera 3DLT sensor, a customized VGG-inspired CNN model outperformed other architec
tures, achieving accuracies of 80.8 % and 75.0 % for primary and recycled aggregates at particle level, 
respectively. Most errors were near-miss classifications, yielding a mean absolute error of 1.0 vol% in PSD 
predictions at material flow level. Explainable artificial intelligence techniques confirmed the reliance of CNNs 
on particle contours for robust classification. Our findings offer a pathway for inline PSD monitoring in pro
cessing of both primary and recycled aggregates, contributing to a more quality-orientated, circular, and sus
tainable construction industry.

1. Introduction

The construction industry is one of the most resource-intensive sec
tors [7]. The German construction industry consumed about 584.6 Mt/a 
of aggregate materials in 2020 alone [1], resulting in significant envi
ronmental impacts [12,34,35,3]. With an increasing number of build
ings nearing the end of their life, a crucial strategy to minimize these 
environmental impacts is the substitution of primary aggregates with 
recycled (RC) aggregates from construction and demolition waste 
(CDW) resulting in significant environmental benefits such as green
house gas emission and energy savings as well as the conservation of 
natural resources and habitats [34,38,3].

However, RC construction materials currently account for merely 
13.2 wt% of the aggregate demand in Germany [1]. Moreover, with 56.4 

Mt/a (73.3 wt%) of the total usage, their utilization is predominantly 
limited to underground engineering applications. While the capacity for 
uptake in underground engineering projects is anticipated to decrease 
due to fewer new road alignments [24], an increasing demand is pro
jected in building construction applications [33]. Increasing the sub
stitution of primary aggregates with RC aggregates, especially in 
building construction applications, is therefore a crucial measure to 
reduce the environmental impacts of the construction industry and meet 
sustainability targets (e.g., [2,8,6,43,41,42]).

The process of turning CDW into recycled aggregates generally in
volves multiple stages carried out by mobile processing plants, leading 
to a variety of procedures being applied in practice, depending on the 
plant used. However, the overarching steps are largely the same: First, 
the CDW material is reduced to smaller sizes (“crushing”). Second, 
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loosened foreign material, such as reinforcement steel or plastic films, 
are removed by magnetic or air separators, depending on the type of 
foreign material (“sorting”). Third, the material flow is sieved into one 
or multiple particle size classes that meet the desired particle size re
quirements (“sieving”). Material that does not meet the requirements, i. 
e., oversized particles, are recirculated into the processing stream for 
further crushing [45]. The so produced recycled aggregates can then be 
utilized to substitute primary aggregates in new construction processes.

To substitute these primary aggregates, especially in applications 
with high quality demands such as building construction, RC materials 
must meet defined quality standards (e.g., [9,20,19]). A crucial quality 
requirement for RC aggregates is the particle size distribution (PSD), 
defined in ISO 20290-5:2023 [21], which is currently determined 
through sampling and manual sieve analyses [21].

Sampling and manual sieve analyses are time-consuming, costly, and 
often limited in their informational value (depending on the represen
tativeness of the sample) [22,32]. Furthermore, the obtained PSDs are 
typically obtained with a significant time delay [32], which hinders the 
ability to promptly react to quality changes or adjust processing pa
rameters based on fluctuating material flow characteristics [27]. 
Moreover, the high personnel costs of manual PSD determinations result 
in infrequently conducted quality control checks [29]. Combined with 
high plant throughputs and fluctuating material flow characteristics, 
this leads to a limited information value of the results, intransparency 
along the value chain [29] and a limited acceptance of the produced RC 
aggregates [16].

1.1. Sensor-based determination of particle size distributions

A solution to these problems could lie in a near real-time determi
nation of PSDs using inline sensor technology and involves a three-stage 
characterization process: First, 3D laser triangulation (3DLT) sensors 
could monitor the material flow inline on conveyor belts after its pro
cessing into RC aggregates. Second, the recorded 3DLT data could be 
segmented into individual particles using (deep-learning-based) 
instance segmentation. Third, the particle size of each particle could be 
predicted using machine/deep learning models and lastly be aggregated 
to a PSDs.

The inline determined PSD could then first be used to monitor and 
document the achieved PSD as a crucial quality criterion in near real 
time. If a deviation from the targeted PSD is identified, process param
eters, such as the rotation speed of comminution machines, could be 
adapted to produce a RC aggregate with a consistent PSD despite fluc
tuating material flow characteristics in the infeed material flow. If such 
an inline PSD monitoring system could be developed, this could help to 
(i) document existing RC qualities (PSDs) to strengthen the acceptance 
of RC aggregates, and (ii) improve RC qualities due to dynamically 
adapted process parameters.

A particular challenge in predicting PSDs of RC aggregates is the fact 
that particle sizes in CDW recycling according to ISO 20290-5:2023 [21]
are not defined by geometric particle dimensions, but by the result of the 
sieving process, i.e., the mesh size of a sieve through which the particle 
can still barely pass. Thus, particle sizes and PSDs cannot be geometri
cally measured but require being predicted, for instance using machine 
learning [32].

1.2. Related work

Sensor-based prediction of PSDs has already been investigated for 
primary raw materials [13,14,18,25,40,48], commercial waste [22], 
and alternative fuels [4]. For CDW, however, previous studies have been 
limited to prediction from 2D stockpile images [3].

In previous work, we have demonstrated that it is both technically 
feasible to segment CDW particles based on 3DLT data using deep 
learning-based instance segmentation [46] and that particle sizes can be 
predicted from segmented/singled CDW particles using particle 

geometries [26] and machine learning models [32].

1.3. Aim and research questions

This paper substantially extends our previous efforts. Instead of 
relying on a fixed and human-made extraction of geometric features 
from the 3DLT data, we aim at training a convolutional neural network 
(CNN) end-to-end that predicts the particle sizes directly from the 
segmented 3DLT data. The aim of the present paper is thus to investigate 
if it is possible to train a CNN that can extract meaningful features 
directly from the given 3DLT image of CDW particles and accurately 
predict particle size classes and PSDs. To achieve this research aim, we 
intend to answer the following three research questions: 

• RQ 1: How accurately can particle sizes according to [21] of primary 
and RC aggregates be predicted using CNNs and 3D laser triangula
tion data and which CNN architectures are suitable for the particle 
size prediction task?

• RQ 2: How can explainable AI techniques be used to better under
stand the model behaviour and which input features influence the 
classification result?

• RQ 3: How accurately can PSDs be determined, if the CNN pre
dictions are aggregated at a material flow level?

2. Material and methods

2.1. Materials

For answering the aforementioned research questions, two datasets 
containing 3DLT recordings of singled out particles and their corre
sponding particle sizes according to [21] were created. The dataset 
PRIM contains images of primary aggregates to be able to compare our 
results with previous studies on primary aggregates (cf. Section 1.2). The 
dataset RCM contains images of RC aggregates to be able to evaluate the 
influence of more complex particle shapes of RC aggregates.

2.1.1. PRIM
For primary aggregates, virgin quartz stones (Min2C quartz pebbles 

light; particle size ranges 2 mm – 8 mm, 8 mm – 16 mm, and 16 mm – 
32 mm; Min2C GmbH [A-3390 Melk, Austria]) were chosen due to their 
hardness and relatively regular shape. As shown in Fig. 1a and Fig. 2a, 
the PRIM particles were characterized by a uniform, bright surface, and 
predominantly smooth and round surface texture.

2.1.2. RCM
The RC aggregates (particle size range 0 mm – 45 mm) originated 

from a CDW processing plant in Germany (MAV Krefeld GmbH [47809 
Krefeld, Germany]), mainly consisting of minerals, building stone, pot
tery (pieces of tiles), concrete and brick debris (cf. Fig. 1b, Fig. 2b). 
These aggregates are currently used, for, e.g., frost protection layers or 
gravel bearing layers according to TL SoB-StB 20 [10] or TL Gestein-StB 
04/23 [11] [46]. The obtained samples were dried at 85◦C until weight 
consistency and then sieved into defined particle size classes (cf. Section 
2.2).

2.2. Sample preparation

Both PRIM and RCM samples were sieved according to [21] on the 
analytical sieve machine from Siebtechnik GmbH (Mühlheim [Ruhr], 
Germany) with the screen mesh sizes 3.15 mm, 4.0 mm, 5.0 mm, 
6.3 mm, 8.0 mm, 10.0 mm, 12.5 mm, 16.0 mmm, 22.4 mm, and 
31.5 mm. The sieving duration was set to 90 seconds at a frequency of 1, 
400 rpm.

After sieving, the PRIM samples were cleaned with water and dried 
at 85 ◦C until weight consistency to reduce the dust formation at the data 
acquisition stage (cf. Section 2.3). The RCM samples were not cleaned to 
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simulate realistic recording conditions in a CDW processing plant. The 
CDW samples included 0.56 wt% non-target materials (e.g., glass, wood, 
plastics), which were manually sorted out, as this investigation focused 
on the particle size prediction for RC aggregates and because their mass 
shares were low.

2.3. Data acquisition

The sieved and prepared samples were then recorded using a custom- 
made dual camera-3DLT setup (Fig. S1 in Supplementary Materials). 
The 3DLT setup used the combination of a vibrating conveyor and a 
black conveyor belt (belt speed: 0.15 m/s, effective belt width: 385 mm) 
to present the material flow as a monolayer with separate, non- 
occluding particles to the 3DLT sensor (singled material flow presenta
tion). The 3DLT sensor consisted of two line-lasers (Z-Laser Z120M18-F- 
660-Ip45; 120 mW output; 660 nm laser wavelength; Z-LASER GmbH 
[79100 Freiberg, Germany]), a custom-made mirror setup, and a AT 
C3–1280-CL 3DLT camera (AT – Automation Technology GmbH [23843 
Bad Oldesloe, Germany]) resulting in a dual camera-3DLT setup. After 
image acquisition, the front and back images from the mirror setup were 
processed and calibrated using a custom-developed, 3DLT calibration 
software in Python, resulting in 3DLT recordings with a spatial resolu
tion of 0.758 mm/Pixel in the z-direction (height) and 0.331 mm/Pixel 
in the x- and y-direction (width and length). The preconditioned and 
sieved samples from Section 2.2 were sequentially placed on the 3DLT- 
setup, such that the particle size classes of each recording were known. 
Table 1 summarizes the number of images (i.e., particles) recorded 
within each particle size class for the PRIM and RCM dataset.

2.4. Image preprocessing

After calibration, the individual particles in the 3DLT recordings 
were automatically extracted using standard image processing tech
niques (skimage.measure.label() [44]) and then further pre-processed for 
the respective CNN models.

2.4.1. Image size alignment
Since the used CNN models require the same input image size for 

each particle, a data preprocessing step was necessary to (i) ensure 
uniform image size for all particles and (ii) retain particle size infor
mation for the CNNs. Rather than scaling all images based on the largest 
particle, potentially losing information in smaller size classes, the 99.5th 
percentile of maximum bounding box dimensions of all particles was 
used as a reference (PRIM: 107 px [35.4 mm], RCM: 119 px [39.4 mm]). 
Images of particles smaller than this reference were padded with black 
pixels (representing a height of 0 mm) to obtain square images with the 
reference dimensions. 0.5 % of the particles in the dataset have a 
bounding box that is larger than the reference size and are therefore 
centrally cropped to the reference size. After the image size alignment, 
images were scaled to a final size of 224 px × 224 px (hereinafter 
referred to as 224 px image size) or 64 px × 64 px (hereinafter referred 
to as 64 px image size) depending on the used CNN model (see Section 
2.5). For models requiring RGB-shaped input instead of grayscale data, 
the grayscale channel was replicated three times to create RGB- 
equivalent input data.

2.4.2. Gray value scaling
After 3DLT calibration (see Section 2.3), each gray value corresponds 

to a height of 1 mm. Due to the investigated particle size range 
(3.15 mm – 31.5 mm, cf. Section 2.2), this does not utilize the full range 
(0− 255) of an 8-bit grayscale image. To standardize brightness values, 
particularly for transfer learning CNN models, all images were subse
quently scaled based on the largest gray value per dataset to obtain a 
grayscale range of 0–255.

2.5. Model training

2.5.1. Investigated CNN architectures
Different CNN architectures with increasing model complexity were 

trained and evaluated for predicting the particle size class of each par
ticle based on the preprocessed 3DLT image (cf. Section 2.4). The first 
three models (CNN architectures B, D, and F) proposed by [31] are 

Fig. 1. RGB images of (a) PRIM and (b) RCM particles in the nine investigated material classes.
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simplified versions of the VGG architecture and were trained from 
scratch. For transfer learning, the CNN architectures VGG16 [39], 
VGG19 [39], ResNet50 [15], and DenseNet [17] were trained using 
transfer learning (see Table S1 in Supplementary Materials).

2.5.2. Training and optimization

2.5.2.1. Train-validation-test-split. Both datasets were randomly split 
into a training-validation dataset for model training and 

hyperparameter optimization (80 %) and an independent test dataset 
(20 %) to evaluate the final model performance. For hyperparameter 
optimization, the training-validation dataset was split into 80 % training 
and 20 % validation data. To monitor the model performance per epoch 
on out-of-sample data and to create a validation curve, in each epoch, 
20 % of the training data have been extracted for the calculation of the 
respective out-of-sample error. After training, the out-of-sample error is 
estimated using the validation data.

2.5.2.2. Hyperparameter optimization. For hyperparameter optimiza
tion, pre-tests we conducted have shown that the learning rate λ and the 
input image size have the strongest influence on the model training. To 
meet computational constraints in model training, we therefore decided 
to focus the hyperparameter optimization on the hyperparameters (i) 
learning rate and (ii) input image size. The learning rate was varied λ ∈

{10− 4, 10− 3, 10− 2}, which was chosen based on previous research re
sults. The input image size was identified was varied to be between 64 px 
and 224 px for the transfer learning models. All non-transfer learning 
models were trained on a constant input image size of 64 px due to the 
lower number of model parameters.

2.5.2.3. Training procedure. All CNNs were trained with a fixed batch 
size of 256 instances for a maximum of 30 epochs. For the transfer 
learning models (VGG16, VGG19, ResNet, and DenseNet), we applied 

Fig. 2. Exemplary, randomly selected 3DLT images of the nine investigated particle size classes for the (a) PRIM and (b) RCM dataset.

Table 1 
Overview of #images per particle size class in the PRIM and RCM dataset.

Particle in class [mm] #Images

PRIM RCM

3.15 – 4 10,911 3,750
4 – 5 21,209 15,066
5 – 6.3 24,412 33,656
6.3 – 8 19,863 14,129
8 – 10.0 8,056 3,143
10 – 12.5 5,591 2,260
12.5 – 16 3,492 1,194
16 – 22.4 2,209 3,494
22.4 – 31.5 1,085 700
∑

96,828 77,392
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their respective preprocessing functions, which convert the data from 
RGB (red-green-blue) to BGR (blue-green-red) and zero-center their 
values.

All CNNs were trained using the Adam optimizer [23] and a sparse 
categorical cross-entropy loss function. We used the callback ear
ly_stop_monitor, which stops the training after no improvement in the 
validation error is observed for 4 epochs [36] and the callback lear
ning_rate_reducer to reduce the learning rate of the model after 2 epochs 
of no improvement on the out of sample error, to close in on the opti
mum and prevent oscillation [47].

2.6. Model evaluation

2.6.1. Metrics
The final models were evaluated both at the particle level (Section 

2.6.1.1) and material flow level (Section 2.6.1.2).

2.6.1.1. Evaluation at particle level. On a particle level, predicting par
ticle size classes represents a classification problem. Thus, we assessed 
the model quality at a particle level primarily using the accuracy (Eq. 
(1)) and confusion matrices. Accuracy refers to the proportion of par
ticles for which the particle size class has been correctly predicted. The 
confusion matrix, on the other hand, compares the predicted particle 
size class against the actual particle size class for each prediction done 
on the test or validation set. Here, correct predictions are presented on 
the antidiagonal (i.e., bottom left to top right) of the confusion matrix. 

accuracy =
#correct classified particles

#all particles
(1) 

2.6.1.2. Aggregation and evaluation at material flow level. Besides a 
correct classification of the particle level, the alignment of the predicted 
PSD (resulting from aggregating particle classifications) with the actual 
PSD (resulting from sieve analysis of a sample) is especially important.

Assuming equal densities for particles in PRIM and RCM datasets, the 
mass-based PSD defined in [21] matches a volume-based PSD. Since 
particle volumes can be measured using 3DLT [30,32], they are avail
able for each particle in the PRIM and RCM datasets. Using the true or 
predicted particle size class per particle and the resulting true 3DLT 
particle volume (Vj) and predicted 3DLT particle volume (V̂ j), a true 
(PSDV(i)) and predicted (P̂SDV(i)) volume-based particle size distribu
tion can be calculated according to Eqs. (2) and (3). 

PSDV(i) =
1

Vtotal

∑ci

j=1
Vj (2) 

P̂SDV(i) =
1

Vtotal

∑ci

j=1
V̂ j (3) 

The prediction of the PSD is a regression problem. We therefore used 
the mean absolute error (MAE, Eq. (4)) to assess the extent to which the 
true PSD and predicted PSD match. 

MAE =
1
n
∑n

i=1
|PSDV(i) − P̂SDV(i)| (4) 

As the calculation of the MAE depends on the considered PSD, we use 
the lower and upper bounds and a mean PSD for frost protection layers 
and gravel bearing layers 0 mm – 45 mm according to TL SoB-StB 20 
[10] as a reference, since this is the current quality standard for the 
investigated RC aggregates. As our investigation focuses on the particle 
size range 3.15 mm to 31.5 mm and used different screen mesh sizes, we 
linearly interpolated the PSD requirements from TL SoB-StB 20, to 
obtain three reference PSDs (min, mean, max) that correspond to the 
PSD requirements from TL SoB-StB 20 as shown in Table S2 in the 
Supplementary Materials.

2.6.2. Explainable AI
Besides merely focusing on creating models with the best possible 

performance, our focus has also been on creating more explainable 
models to be able to better investigate their robustness and limitations. 
For instance, class maps are used to investigate the performance and 
prediction uncertainty in combination with the difficulty of the 
respective predictions. Moreover, to investigate what parts of the image 
are most influential to the decision made by the model, heat maps of the 
feature activations have been created. By using these explainable AI 
(XAI) tools, it is then possible to draw more in-depth conclusions of the 
actual performance and robustness of the models, thereby allowing for 
more accurate suggestions for further optimization.

2.6.2.1. Feature activations. For visualizing the feature activations, we 
used the gradient-weighted class activation mapping (Grad-CAM) [37]. 
Grad-CAM elucidates the regions within an input image that signifi
cantly influence the classification decision of a network regarding a 
specific class. One of the key strengths of Grad-CAM lies in its ability to 
provide interpretability without compromising model accuracy, thereby 
retaining the original architecture of deep models. By leveraging the 
gradients flowing into the final convolutional layer of the CNN, 
Grad-CAM generates a heat map that highlights the crucial regions of an 
image. This heat map is constructed by computing the gradient of the 
predicted class score with respect to the feature maps of the last con
volutional layer, thereby discerning the significance of each feature map 
for a specific class.

2.6.2.2. Class maps. Class maps have been made to acquire insights on 
the model performance in such a way that model uncertainty and per
formance can be compared with the difficulty of the individual obser
vations. To do so, observations were color coded based on the class 
assigned by the model (i.e., the prediction). To determine the model 
uncertainty, the probability of an observation belonging to another class 
is extracted. Additionally, observation difficulty is defined by localized 
farness, where the nearest neighbors are calculated using the kernel 
density tree, a k-NN algorithm designed for fast conversion of N-point 
problems. Here, Euclidean distance is used as the distance metric and the 
Epanechnikov kernel is used as a weighting function to weigh the local 
distances and calculate the corresponding class probability, defined by 
P
(
i ∈ gi

)
[5]. What follows is the actual calculation of localized farness, 

using the following formula: 

localized farness = 1.0 − P(i ∈ gi) (5) 

This allows a comparison of the observation difficulty in terms of 
similarity with other observations in the same class: if an observation is 
highly similar, the localized farness will approach zero, while high 
dissimilarity leads to near-one values. In the remainder of this work, 
localized farness will be referred to as farness.

3. Results and discussion

Based on the developed methodology and created datasets, Sections 
3.1, 3.2, and 3.3 aim at answering the research questions RQ 1, RQ 2, 
and RQ 3 (cf. Section 1.3), respectively.

3.1. Prediction of particle sizes (RQ 1)

Table 2 summarizes the achieved training and validation accuracies 
for all investigated CNNs on the (a) PRIM and (b) RCM dataset for all 
investigated hyperparameters. The highest validation accuracy – which 
represents the CNN with the best hyperparameter setting for the given 
task and the investigated hyperparameter settings – for each model is 
boldfaced, while the overall best model is boldfaced and underlined.
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3.1.1. Influence of input image size
Regarding the input image size, the investigated CNNs do not benefit 

from an increased image size, as across all models trained on 64 px and 
224 px data, no significant difference between the classification accu
racies based on 64 px and 224 px input images is found (p = 0.8954), cf. 
Table 2. Subsequent comparisons therefore focus on the 64 px input 
image size models.

This finding may thus indicate that an input image size of 64 px is 
sufficient for the model to obtain the differences between the investi
gated particle size classes, or at least the advantages of an increased 
input image size do not outweigh the disadvantages of a higher over
fitting probability.

3.1.2. Influence of learning rate
When comparing the influence of the initial learning rate across all 

64 px models (Table 2), the learning rate significantly influences model 
performance (p = 0.0025). Across all models and datasets, lower 
learning rates result in improved classification results. For example, 
when calculating the arithmetic mean over all models and datasets for 
64 px images, the validation accuracy increases from 59.3 % at λ 
= 10− 2, over 72.0 % at λ = 10− 3 to 74.6 % at λ = 10− 4.

3.1.3. Influence of CNN architectures
When comparing the model architectures based on the optimal 

image size and learning rate (cf. bold numbers in Table 2), it can be seen 
that the classification accuracy first increases and then decreases with 
increasing model complexity between CNN B (73.6 % for PRIM & 
69.3 % for RCM), CNN D (80.4 % & 74.3 %), CNN F (80.8 % & 75.0 %), 
VGG16 (79.1 % & 73.7 %), VGG 19 (78.7 % & 73.8 %), ResNet (76.9 % 

& 72.6 %) to DenseNet (74.5 % & 70.8 %), cf. Fig. 3 h. For both datasets, 
the CNN F architectures achieves the highest classification accuracy, 
thus indicating a potential optimal model complexity for the investi
gated datasets and given prediction task.

3.1.4. Influence material origin (PRIM vs. RCM)
Comparing both datasets PRIM and RCM shows that all models 

achieve on average + 4.9 percentage points more accurate predictions 
(validation set) on the PRIM dataset (mean accuracy: 77.7 %, top ac
curacy: 80.8 %) compared to the RCM dataset (mean accuracy: 72.8 %, 
top accuracy: 75.0 %). A plausible reason for this observation is the less 
regular particle shapes of RCM compared to PRIM, as shown in Fig. 1
and Fig. 2.

3.1.5. Learning curves
Fig. 3 supports these findings and gives further insight into the 

training process by visualizing the model-specific learning curves. For 
all models, a rapid decrease of the training and validation loss at the 
beginning of the training process is observed before the loss reaches a 
plateau at the end of the training process and the learning rate reduction 
and early stopping callbacks are activated. Comparing the CNN archi
tectures trained from scratch (CNNs B, D, F) with the transfer learning 
models (VGG16, VGG19, ResNet, and DenseNet), the positive effects of 
transfer learning are confirmed, as the models start at a lower initial loss. 
As shown before, the loss of CNNs on the PRIM dataset is lower 
compared to RCM dataset. For all models, a slight overfitting is observed 
at the end of the training processes (training loss decreases while the 
validation loss plateaus), indicating that a further training of the CNNs 
would not further increase the model’s accuracy.

3.1.6. Confusion matrix
In Fig. 4, confusion matrices of the top 3-performing models for the 

PRIM and RCM datasets are shown, to allow for a more detailed 

Table 2 
Training and validation accuracy for the seven investigated CNN architectures on the (a) PRIM and (b) RCM dataset for all investigated hyperparameter settings. 
Highest validation accuracy per model highlighted in bold, highest validation accuracy over all models highlighted in bold and underlined.

(a) Learning rate 10− 4 10− 3 10− 2

Model/input size 64 px 224 px 64 px 224 px 64 px 224 px

Train B 68.1 % - 71.8 % - 63.8 % -
D 82.3 % - 86.2 % - 73.4 % -
F 84.3 % - 86.9 % - 71.8 % -
VGG− 16 78.8 % 85.1 % 78.9 % 83.8 % 54.9 % 80.9 %
VGG− 19 79.7 % 84.8 % 43.4 % 84.0 % 43.4 % 74.4 %
ResNet 80.9 % 69.0 % 79.9 % 76.7 % 80.4 % 57.7 %
DenseNet 74.8 % 49.5 % 74.1 % 66.1 % 74.2 % 43.4 %

Val B 70.0 % - 73.6 % - 59.4 % -
D 80.4 % - 79.6 % - 73.5 % -
F 80.8 % - 79.5 % - 72.2 % -
VGG− 16 77.9 % 79.1 % 76.6 % 78.7 % 50.6 % 77.3 %
VGG− 19 78.1 % 78.7 % 43.4 % 78.5 % 43.4 % 73.2 %
ResNet 76.7 % 68.9 % 76.9 % 75.4 % 76.4 % 56.1 %
DenseNet 74.5 % 50.1 % 74.2 % 68.0 % 74.3 % 43.4 %

(b) Learning rate 10− 4 10− 3 10− 2

​ Model/input size 64 px 224 px 64 px 224 px 64 px 224 px
Train B 65.1 % - 67.5 % - 65.6 % -

D 77.5 % - 80.2 % - 58.7 % -
F 82.9 % - 78.1 % - 55.8 % -
VGG− 16 74.6 % 79.7 % 73.4 % 77.1 % 25.3 % 74.5 %
VGG− 19 75.3 % 78.1 % 73.4 % 76.6 % 25.3 % 71.7 %
ResNet 77.7 % 57.2 % 76.8 % 72.7 % 75.1 % 48.3 %
DenseNet 69.4 % 48.6 % 70.4 % 54.1 % 70.2 % 65.0 %

Val B 67.4 % - 69.3 % - 67.0 % -
D 74.3 % - 73.2 % - 61.3 % -
F 75.0 % - 73.7 % - 59.5 % -
VGG− 16 73.1 % 73.7 % 72.7 % 72.8 % 25.0 % 72.0 %
VGG− 19 73.8 % 72.6 % 72.9 % 72.5 % 25.0 % 69.9 %
ResNet 72.3 % 56.7 % 72.6 % 70.2 % 72.2 % 48.3 %
DenseNet 69.8 % 49.4 % 70.3 % 55.1 % 70.8 % 66.4 %

4 p-values express the level of significance. Here, we calculated the p-value 
based on a dependent t-test for paired samples using scipy.stats.ttest_rel()

5 Calculated based on one-way ANOVA test using scipy.stats.f_oneway()
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performance comparison. For all models, a similar trend can be 
observed. That is, all three models predict the true particle size class 
within ± one particle size class deviation in more than 98 % of all cases 
and the true particle size class ± two particle size classes deviation in 

100 % of all cases.
Further, the confusion matrices show that predictions are generally 

more accurate for the higher particle size classes compared to the lower 
ones, despite a higher number of particles in the latter class during 

Fig. 3. Batch-wise overview on the training process of the investigated CNN architectures (best performing configuration per architecture); continued lines: training 
loss, dashed lines: validation loss.
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training (cf. Table 1). A likely explanation for this effect could be the 
different (absolute) particle size class intervals due to the R10 series of 
the used screen mesh sizes (cf. Section 2.2). While particle size class 
interval for the lowest particle size class (3.15 mm to 4.0 mm) is 
0.85 mm, it is 9.1 mm for the highest investigated particle size class 

(22.4 mm to 31.5 mm). Thus, particles among the lower particle size 
classes are more similar in size and thus may be more difficult to 
correctly by the CNNs.

Fig. 4. Model predictions of selected, top-performing CNNs on validation set visualized as confusion matrices.
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3.2. Model explainability (RQ 2)

3.2.1. Feature activation
Fig. 5 shows the feature activations (shown in Fig. 5a.ii and Fig. 5b. 

ii) for the best performing CNN (CNN F) for randomly selected PRIM and 
RCM particles (shown in Fig. 5a.i and Fig. 5b.i) across all nine investi
gated particle size classes. In Fig. 5a.ii and Fig. 5b.ii, it can be seen that 
the feature activations appear to focus on the particle contour rather 
than the center of the particles or individual parts of the particle (e.g., 
highest point). Furthermore, the model seems to not only consider the 
particle itself but also its negative contour, i.e., the immediate back
ground around the particle. As the feature activations indicate a general 
interaction of the model with the particle contour, the model overall 
behaves as expected. However, one should note that not all model in
teractions can be fully explained due to the black box nature of CNNs. An 
example is the activation of merely parts of the contours, which occurs 
for instance for particle size classes 12.5 mm – 16 mm and 22.4 mm - 
31.5 mm for the PRIM material class.

3.2.2. Class maps
Fig. 6 provides deeper insights into the classification of individual 

particles for the best performing model (CNN F) through the use of 
localized class maps, by juxtaposing model confidence (alternative 
probability) on the y-axis (bottom: high confidence, top: low confi
dence) against the farness (deviation of the particles [3DLT images] from 
the overall dataset) on the x-axis (left: particles very similar to other 
particles, right: particles significantly diverging from other particles). 
The distribution of individual particles from the test set is visualized 
using a kernel density estimation and each particle size class is visual
ized in a separated color.

A comparison of the farness distribution of the PRIM (Fig. 6a) and 
RCM (Fig. 6b) particles shows that the farness of the RCM particles is 
larger than the farness of the PRIM particles, which corresponds to 
higher variety and more complex particle shapes shown in Fig. 1. 
Additionally, comparing the model uncertainty of CNN F a higher un
certainty in predicting the particle size class of RCM particles compared 

to PRIM particles can be distinguished, which corresponds to the lower 
validation accuracy in the RCM dataset shown in Table 2 and Fig. 4. 
Combining both insights validates the hypothesis from Section 3.1.4 that 
a larger variety in particle shapes (=larger farness) in the RCM dataset 
results in a more difficult classification task and thus a lower model 
accuracy.

Comparing the farness distribution among the different particle size 
classes shows that with the exception of the 8.0 mm – 10.0 mm particle 
size class of RCM, the farness of the smaller particle size classes is larger 
than the farness of the larger particle size classes (cf. Section 3.1.4). A 
potential reason for this observation could be that for small particles, 
even small changes in the particle contour have a relatively larger in
fluence of the farness, since the black background remains constant and 
the overall particle size class interval in the smaller particle size classes 
is smaller. In addition, Fig. 6 shows that smaller particle size classes are 
classified more uncertain, corresponding to the lower accuracy for 
smaller particle size classes known from Fig. 4. In total, these findings 
support the hypothesis that smaller particle size classes are more diffi
cult to classify, likely since (i) already small deviations (e.g., edge effects 
in 3DLT detection of the particle contour) can have a relatively larger 
influence on the particle image and (ii) the particle size differences in 
the smaller particle size classes are absolutely smaller (cf. Section 3.1.4).

Analyzing the misclassified particles (upper half of the respective 
subplots in Fig. 6) shows that the overall model behavior is plausible. 
First, the incorrectly classified particles have a larger farness (=further 
away from original data) compared to the correctly classified particles, 
thus indicating that the CNN has higher difficulty with classifying so- 
called outliers, i.e., particles that deviate more strongly from the over
all dataset. Second, as shown by Fig. 4, the CNN predicts maximum one 
particle size class off in more than 98 % of the cases and never predicts 
sizes that are more than two particles sizes away from the true class.

3.3. Aggregation to particle size distributions (RQ 3)

To enable an inline sensor-based monitoring of PSDs (cf. Section 
1.1), it is not sufficient to predict individual particle size classes at the 

Fig. 5. Feature activations of CNN F for randomly selected PRIM and RCM particles for the nine investigated particle size classed visualized using Grad-CAM.
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particle level alone, but the predicted particle size classes of thousands 
of particles have to be aggregated to a PSD at the material flow level, 
which has the potential advantage that balanced classification errors 
(one particle size class too low or too high) can even out to some extent.

As such, in Fig. 7, three true and predicted PSDs for the PRIM and 
RCM particles – based on the independent test set – are compared (cf. 

Section 2.5.2.1). The true PSDs were derived from the TL SoB-StB 20 
[10] norm and correspond to the minimum, maximum, and a mean 
permissible PSD for the use of RC aggregates in road construction (cf. 
Table S2).

As shown in Fig. 7, using CNN F, the PSDs can be accurately pre
dicted with a MAE of 1.0 vol% (PRIM: PSD min: 1.2 vol%, PSD mean: 

Fig. 6. Class maps for CNN F on the (a) PRIM and (b) RCM dataset across the nine investigated particle size classes. Visualization of density as a kernel-density 
estimation plot in 10 %-stages, darker colors represent higher densities.
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0.8 vol%, PSD max: 0.9 vol%; RCM: PSD min: 1.3 vol%, PSD mean: 
0.7 vol%, PSD max: 1.0 vol%). Corresponding to the assumption, too 
large and too small predicted particle size classes are largely evened out, 
therewith proving the feasibility and robustness of our approach.

3.4. Limitations and future work

As our work focused on investigating the general feasibility of the 
CNN-based particle size predicting approach, there are several limita
tions, which should be addressed in future work. First, we investigated 
only a limited set of deep learning models and optimized only a limited 

set of hyperparameters over a limited set of settings each. Therefore, 
investigating additional deep learning models and a more thorough 
hyperparameter optimization could result in even more accurate pre
dictions. Second, data augmentation and synthetic training data could 
augment our existing training data to further increase the model 
performance.

Second, for an industrial application of our results the interference 
time is of great importance, as the incoming data must be processed in 
nearly real-time. Therefore, the prediction time of the different models 
should be compared which each other. These computational time cal
culations should also consider the necessary segmentation of touching or 

Fig. 6. (continued).
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overlapping particles. Therefore, it could also be interesting to investi
gate the segmentation and particle size prediction end-to-end in a single 
step (e.g, using semantic instance segmentation).

Third, we compared the PSD prediction only based on 3DLT particle 
volumes (assuming constant densities), while particle masses are used in 
ISO 20290-5:2023 [21]. Therefore, the prediction of PSDs should be 
additionally compared with sieve analysis according to ISO 
20290-5:2023 [21], which follows a mass-based weighting of the indi
vidual particle classes. Hence, additional prediction errors could occur 
between the 3DLT-based particle volume to particle mass due to (i) 
different densities of different materials contained in CDW and (ii) dif
ferences between the hull particle volume detected by 3DLT compared 
to true particle volume (excluding hollow spaces), as is also shown for, e. 
g., post-consumer lightweight packaging waste [30]. Furthermore, a 
wide range of investigated PSDs might be of interest to find out which if 
different PSDs result in different prediction errors or biases.

4. Conclusions

PSDs of recycled aggregates are an essential quality requirement to 
enable the substitution of primary with RC aggregates in building con
struction applications and the realization of associated ecological and 
economic benefits. Currently, PSDs in CDW recycling are determined 
through sampling and manual sieve analyses, which is time-consuming, 
costly, and associated with a significant time delay. A promising 
approach to overcome these limitations of manual PSD determinations is 
the application of inline sensor technology. Here, we therefore investi
gated the possibility of predicting PSDs of primary and RC aggregates 
using 3DLT and CNNs to enable an inline PSD monitoring in CDW 
recycling plants for an automated quality monitoring and process 

control.
96,828 and 77,392 particles from primary and RC aggregates, 

respectively, in the particle size range 3.15 mm to 31.5 mm were sieved, 
classified into nine particle size classes, and recorded using an inline 
dual camera 3DLT setup. Based on the created dataset, seven different 
CNN architectures with different hyperparameter configurations were 
trained and evaluated.

The custom CNN F architecture showed the highest validation ac
curacy among all investigated CNN architectures thus indicating a 
suitable model complexity. No significant changes have been found 
between transfer learning models trained on 64 px versus 224 px input 
sizes, indicating that an input image of 64 px is sufficient for the 
investigated particle size range. Compared to the primary aggregates, 
predicting the particle size prediction of the RC aggregates is more 
complex, as shown by a 4.9 percentage points lower validation accuracy 
across all models and a higher model uncertainty. The top performing 
CNN F achieved a validation accuracy of 80.8 % for the primary and 
75.0 % for the RC aggregates, respectively. 98 % of all classifications 
occurred within ± one particle size class and no classifications were 
more than two particle size classes away from the true class. [RQ 1]

The applied XAI methods reveal an overall robust and plausible 
model behavior. First, an analysis of feature activations using Grad-CAM 
[37] revealed that the model focuses on particle contour instead of the 
entire particle area or the highest point on the particle surface. However, 
not all feature activations could be fully explained due to the 
black-box-nature of CNNs. Second, class maps confirm that smaller 
particle size classes are more difficult to be correctly classified by the 
model, resulting in a higher model uncertainty and lower F1-score. [RQ 
2]

Aggregating the predicted particle size classes of CNN F to PSDs at 
the material flow level indicates that the PSDs of both primary and RC 
aggregates are predicted within ± 1.0 vol% MAE. The aggregation at 
the material flow level shows the advantage that balanced classification 
errors of individual particles can be largely evened out. [RQ 3]

In future work, our approach should be further validated with mass- 
based sieve analysis across a large PSD range and additional deep 
learning techniques could be investigated. In addition, our investigation 
should be extended to technical lab and industrial scale, where an 
extension of particle size range, the segmentation of overlapping parti
cles [46], and the correction of segregation effects [28] are remaining 
challenges that need to be addressed.

Overcoming these challenges and enabling an inline sensor-based 
monitoring of particle size distributions in CDW recycling promises 
not only a higher transparency, but also a higher quality of produced RC 
aggregates based on an inline quality monitoring and adaptive process 
control. These improved and more transparent qualities can help to 
further increase the substitution of primary aggregates in building 
construction applications and can thus support the realization of a more 
circular and sustainable construction industry.
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