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A B S T R A C T   

Mass-based material flow compositions (MFCOs) are crucial to assess and optimize mechanical plastic recycling 
processes. While MFCOs are determined by manual sorting analysis today, in the future MFCOs could be 
determined inline through near-infrared-based material flow characterization. This study aims to quantify the 
accuracy of near-infrared-based MFCO determinations to assess its technical feasibility. Binary mixtures of plastic 
flakes and post-consumer packaging were pixel-based classified at different material flow presentations, and 
mass-based MFCOs were predicted from the resulting false-color data using different data processing techniques. 
The results show high correlations between near-infrared-based false-color data and mass-based MFCOs. 
Through regression models and data aggregation, it was possible to predict mass-based MFCOs with mean ab-
solute errors of 0.5% and 1.0% and R2-scores of 99.9% and 99.4% for plastic flakes and packaging, respectively, 
across all material flow presentations. The demonstrated technical feasibility thus paves the way for new sensor 
technology applications in plastic recycling.   

1. Introduction 

Since the invention of the first synthetic polymer in 1907 (Crespy 
et al., 2008), more than 8,300 Mt of plastics have been produced 
worldwide (Geyer et al., 2017). While advantageous material properties 
and low production costs of plastics have led to their widespread use in 
the first place, these advantages have recently been overshadowed by 
negative environmental impacts (Dris et al., 2020). Production of new 
plastic requires fossil fuels as raw material, consumes large amounts of 
energy, and emits significant amounts of greenhouse gases (GHGs) 
(Zheng and Suh, 2019); it is estimated that cumulative GHG emissions 
associated with plastics could account for 10% to 13% of the total 
remaining carbon budget by 2050 (Shen et al., 2020). In 2010 alone, 
about 4.8 million to 12.7 million tons of plastics entered the oceans 
(Jambeck et al., 2015), where they endanger wildlife (Moore, 2008) and 
accumulate as microplastics in organisms and food chains (Avio et al., 
2017; Chen et al., 2021a). 

The global plastics crisis can only be tackled through a plethora of 
complementary measures (Nielsen et al., 2020). Starting with the 
reduction of plastic consumption, through longer use cycles and reuse of 
plastic products to zero-loss collection and high-quality recycling, these 
measures contribute to a reduction of the environmental impacts of 
plastics. In this regard, recycling processes play a key role: On the one 
hand, plastic recycling avoids negative impacts of alternative end-of-life 
operations (e.g., incineration, landfilling). On the other hand, produced 
plastic recyclates can substitute primary plastics and thus avoid negative 
environmental impacts of primary plastic production (Cudjoe et al., 
2021). Among all recycling processes, mechanical recycling is consid-
ered particularly advantageous due to its low energy demand and low 
carbon footprint (Davidson et al., 2021). 
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1.1. Mechanical recycling of post-consumer plastics 

Mechanical recycling of post-consumer plastics involves three stages: 
First, end-of-life plastic products and packages are collected according to 
country-specific collection schemes (e.g., “lightweight packaging waste” 
[LWP] in Germany or “plastic packaging, metal packaging, drinks car-
tons” in Belgium). Second, sorting plants sort the collected plastic wastes 

into material-, polymer-, or color-specific preconcentrates. Third, 
specialized processing plants purify the preconcentrates into plastic 
recyclates. These recyclates can then substitute primary plastics and 
achieve environmental benefits as outlined above. (Feil and Pretz, 2020) 

However, taking the EU27+3 countries as an example, only 8.5 wt% 
of the plastic demand in 2020 could be covered by post-consumer 
recyclates due to high material losses along the value chain (Plastic 

Fig. 1. Potential applications of novel SBMC methods in consumer-based plastic cycles and resulting material flow presentations. (a) Simplified overview of 
consumer-based plastic cycles with selected, potential sensor positions; (b) simplified cross-section view of different material flow presentations: singled (SI), 
monolayer (MO), multilayered bulk with bulk heights H1 and H2. x: conveying direction, BP: bale press, P: Packing, FSS: float sink separation, PC: post-consumer; 
*post sorting can be performed automatically with sorting robots, manually, or not at all; in the case of post sorting through sorting robots, the resulting data streams 
may also be available for material flow characterization. 
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Europe, 2022): From 29.5 Mt/a collected post-consumer plastics in the 
EU27+3, only 34.6 wt% (10.2 Mt/a) (Plastic Europe, 2022) were sent as 
plastic preconcentrates to processing plants. Of the 9.1 Mt/a plastic 
preconcentrates treated in EU27+3 processing plants, only 60.4 wt% 
(5.5 Mt/a) (Plastic Europe, 2022) resulted in plastic recyclates. In 
addition, low and/or unknown plastic recyclate qualities hamper pri-
mary plastic substitution in applications with high-quality requirements 
and the general acceptance of plastic recyclates (Alassali et al., 2021). 

1.2. Sensor-based material flow characterization 

A promising approach to both minimize material losses and increase 
product qualities in mechanical plastic recycling lies in novel sensor- 
based material flow characterization (SBMC) applications. In SBMC, sen-
sors and (machine learning) algorithms are used to digitally characterize 
material flows. Based on material flow characteristics acquired through 
SBMC, new applications can be envisioned for the optimization of me-
chanical recycling processes (Fig. 1). (Kroell et al., 2022a) 

For SBMC applications in mechanical recycling of post-consumer 
plastics, material flow compositions (MFCOs) are of particular interest 
(Kroell et al., 2022a). Today, MFCOs in plastic recycling are (almost 
exclusively) determined through sampling and manual sorting analysis, 
which is time- and cost-intensive and thus often only conducted on an 
irregular basis. The resulting intransparency due to the unknown MFCOs 
results potentially in large inefficiencies. In the future, SBMC methods 
could help achieve transparency at lower costs and pave the way to new 
applications that help increase the quality and quantity of recycled 
plastics: 

First, MFCOs inside sorting and processing plants could enable an 
adaptive and intelligent process control to enhance the plant perfor-
mance and availability (Fig. 1a.iv and v). For example, SBMC data could 
enable novel sensor-based process monitoring (e.g., Kroell et al., 2022b; 
Schlögl and Küppers, 2022) or sensor-based process control (e.g., Küppers 
et al., 2022) applications. 

Second, information on output MFCOs could make sensor-based 
quality control of product fractions from sorting and processing plants 
possible (Fig. 1a.iv and v). For example, adaptive pricing models could 
be implemented based on SBMC data, or sorting products with low 
quality can be identified for possible reprocessing (Kroell et al., 2022a). 

Third, input MFCOs based on SBMC in sorting plants could enable 
the monitoring and improvement of separate waste collection (Fig. 1a. 
iii). For example, material losses during waste collection could be 
reduced by more efficiently allocating and assessing public information 
campaigns for separate waste collection (Initiative „Mülltrennung 
wirkt“, 2021). 

However, all SBMC applications rise and fall with the accuracy (ISO 
5725, 2022) of the sensor-based determined MFCOs: If MFCOs cannot be 
quantified accurately, then (i) adaptive process control algorithms 
cannot identify optimal machine parameters (Küppers et al., 2022), (ii) 
confidence in statements of potential sensor-based quality monitoring 
systems is not given, and (iii) input material flows cannot be reliably 
monitored. 

1.3. Accuracy of sensor-based determined MFCOs 

SBMC data processing can be divided into pixel, particle, and ma-
terial flow levels (Kroell et al., 2022a). At the pixel- and particle-level, 
several studies have already demonstrated that non-carbon-black stan-
dard plastics can be differentiated with > 99% classification accuracy by 
appropriate classification algorithms due to their unique near-infrared 
(NIR) spectra (Kroell et al., 2022a). While several SBS manufacturers 
are already providing area-based material statistics from existing SBS 
equipment to plant operators (e.g., Binder+Co AG, 2022; Pellenc ST 
SAS, 2022; REDWAVE, 2022; Sesotec GmbH, 2022; STEINERT GmbH, 
2022; TOMRA System ASA, 2022), two critical research gaps remain 
unsolved: 

Research gap 1: Provision of mass-based indicators. Pixel-based 
classified NIR data provides only area-based information on MFCOs, 
while product qualities and separation processes are assessed using 
mass-based indicators (Kroell et al., 2021; Kroell et al., 2022a). Due to 
different material densities and grammages, area-based material flows 
compositions cannot be directly converted into mass-based MFCOs 
(Kroell et al., 2021). In previous work (Kroell et al., 2021), it was 
demonstrated that individual particle masses can be predicted from 2D 
and 3D sensor data using material-specific grammages (mass per area 
occupied at the conveyor belt) or machine learning models at the par-
ticle level. However, the question of how the accuracy of mass pre-
dictions contributes to the overall accuracy of MFCO determination at 
the material flow level remains unsolved. 

Research gap 2: Consideration of different material flow pre-
sentations. Within sorting and processing plants, material flows are 
conveyed in different material flow presentations (MFPs): 

• In sensor-based sorting (SBS) stages, material flows are usually pre-
sented as singled monolayers on acceleration belts to the SBS units to 
achieve sufficient sorting results (Feil et al., 2021; Kroell et al., 
2022b), i.e., materials do not overlap or touch each other on the 
conveyor (Fig. 1b.SI). 

• For preconditioning processes (e.g., wind-shifting), a MFP as mono-
layers (i.e., particles touch but do not largely overlap each other; 
Fig. 1b.MO) is often sufficient.  

• For material transportation, material flows are often transported as 
multilayered bulks (i.e., particles overlap each other; Fig. 1b.H1/H2) 
(Kroell et al., 2022a). 

Since NIR is a surface measurement technology with a limited 
penetration depth (Chen et al., 2021b), only the composition of the 
material flow surface can be determined with NIR, which might differ 
from that of the full material flow (Kroell et al., 2022a). Thus, it is still 
unclear (a) if SBMC of post-consumer plastics in the case of missing 
material singling is technically feasible at all and (b) how accurate the 
obtained MFCOs are under different MFPs (Kroell et al., 2022a). 

1.4. Aim and research question 

This study aims to evaluate the technical feasibility and quantify the 
accuracy of NIR-based MFCO determination of post-consumer plastics. 
More specifically, we aim to answer the following research question: 
How accurate are NIR-based determined MFCOs (i) for different particle 
types (i.e., flakes and articles, cf. Fig. 1b), (ii) at different material flow 
presentations, and (iii) based on different data processing techniques? 

2. Material and methods 

To answer this research question, we created binary material mix-
tures of plastic flakes and articles with defined MFOCs. We presented 
these mixtures at different MFPs (cf. Fig. 1b) to a state-of-the-art NIR 
sensor, which classifies the material flow pixel by pixel into pre-defined 
material classes. Subsequently, the number of pixels per material class of 
a given evaluation area were counted. Different models (density, 
grammages, and regression) were used to estimate MFCOs from NIR- 
based pixel counts. Estimated MFCOs were then compared to known 
MFCOs from creating the mixtures to assess the accuracy of NIR-based 
MFCO determination. 

2.1. Materials and mixtures 

Our investigations were structured into two test series: In test series 
T1, the determination of MFCOs of plastic flakes is investigated to 
simulate applications in processing plants (cf. Fig. 1a.v). In test series 
T2, post-consumer plastic packaging articles are studied to simulate 
applications in sorting plants (cf. Fig. 1a.iv). 
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2.1.1. Plastic flakes (T1) 
To obtain pure plastic flakes, white high-density polyethylene 

(HDPE) and transparent polyethylene terephthalate (PET) plates of 
3 mm thickness from S-POLYTEC GmbH (Goch, Germany) have been 
subsequently comminuted in rotary shear (see Table S1 in supplemen-
tary materials for technical data) for primary comminution and in a 
cutting mill (Table S2) for secondary comminution. Afterward, the 
ground plastic flakes have been sieved on a analytical sieve (Table S3) to 
obtain plastic flakes in the particle size range of 10 mm – 20 mm, which 
is a common particle size range in plastic processing (Maisel et al., 
2020). Fig. 2a-c show exemplary RGB and false-color images as well as 
projection area distributions of the investigated plastic flakes. 

2.1.2. LWP samples (T2) 
For T2, HDPE packaging, PET bottles, and beverage cartons (BCs) 

were sampled from the LWP sorting plant Hündgen Entsorgungs GmbH 
& Co. KG (Swisttal, Germany). Each material fraction product fraction 
was sampled from the respective product fraction at the end of the 
sorting process (1 m3 total sampling volume per product fraction). To 
ensure maximum representativity during sampling, the full material 
flow was sampled from a continuously falling material stream according 
to (Länderarbeitsgemeinschaft Abfall, 2001). The particle size range of 
the investigated LWP samples is approx. 60 mm – 240 mm (see [Kroell 
et al., 2021] for further details on the sampling campaign). Afterward, 
remaining impurities (fines [< 60 mm] and non-target material) were 
manually removed to obtain pure material fractions of each material (cf. 
Fig. 2d-f). 

2.1.3. Binary mixtures 
Three types of binary mixtures were generated to simulate the in-

fluence of different materials and particle types: (T1) HDPE and PET 
flakes, (T2a) post-consumer HDPE and PET packaging, and (T2b) post- 
consumer HDPE and BC packaging. For all three mixtures, n = 11 
HDPE shares were investigated: 0%; 0.1%; 0.5%; 1%; 2.5%; 5%; 10%; 
20%; 30%; 40%; and 50%. 

For T1, raw densities of PET and HDPE flakes are known (ρV, HDPE =

0.96 g/cm3, ρV, PET = 1.27 g/cm3), thus mass-based (wi) and volume- 
based MFCOs (φi) can be converted into each other using Eq. (1). To 
eliminate the known density influence on NIR-based determination from 
Eq. (1) and to make the results easier transferable to mixtures with 
different density combinations (e.g., polypropylene or polyvinyl chlo-
ride), HDPE shares for T1 are prepared in volume percent (φi) and we 
focus on the prediction from area-based (αi) into volume-based (φi) 
MFCOs within this study. 

wi =
φi*ρV,i
∑

jφj*ρj
(1) 

For T2 (post-consumer packaging waste), an indication of material 
densities is not possible due to post-consumer waste characteristics (e.g., 
post-consumer effects, residual content, material composites, hollow 
spaces). Thus, material mixtures of T2 were created in wt%. 

2.2. Experimental setup 

For both test series, the measuring situation in a processing plant 
(T1) and sorting plant (T2) was simulated using a lab-scale (T1) and 
technical-lab-scale (T2) test rig to take different particle sizes into ac-
count and to enable sufficiently high sample sizes. Each test rig consists 
of (i) a feeding unit and a conveyor belt to create different MFPs and (ii) 
a NIR sensor for data acquisition (Fig. 2g). 

2.2.1. Material flow presentation 
Mixtures were presented in four different MFPs to the NIR sensor to 

simulate different scenarios defined in Fig. 1b: singled monolayer (SI), 
monolayer (MO), bulk height h1 (H1), and bulk height h2 (H2) (h2 > h1; 

T1: h1 ≈ 10 mm, h2 ≈ 17 mm; T2: h1 ≈ 150 mm, h2 ≈ 300 mm). Fig. 2h-k 
show the belt occupation and bulk heights of the four different MFPs 
exemplarily for T1 based on 3D laser triangulation recordings.1 

For T1, different MFPs were achieved through a vibrating conveyor 
operated at different conveying speeds (Fig. 2g.F1). For T2, an ascending 
conveyor was used for feeding in the SI and MO trials (Fig. 2g.F2) and a 
dosing bunker with a stamp for the feeding in the H1 and H2 trials 
(Fig. 2g.F3). In both test series, black conveyor belts were used for 
material transportation (conveyor width: bT1 = 385 mm, bT2 = 845 mm; 
conveying speed: vT1 = 0.25 m/s, vT2 = 1 m/s). 

Since the recording of the sensor data was technically limited to 60 s 
per trial (maximum recording time of uninterrupted false-color data), 
the material mixtures per trial were adapted to the respective MFP: The 
feed volumes (Vi) in individual test series and MFPs were VSI ≈ 6 L, 
VMO ≈ 10 L, VH1,H2 ≈ 12 L for T1 and VSI,MO ≈ 300 L, VH1,H2 ≈ 500 L for 
T2. Each mixture was measured n = 10 (T1) and n = 5 (T2) times for 
each HDPE share and MFP, resulting in a total of n = 880 trials. 

2.2.2. NIR recording and classification 

2.2.2.1. Sensor. In both test series, a Helios-G2–320 NIR sensor from 
EVK DI Kerschhaggl GmbH (Raaba, Austria) was used to capture and 
classify the NIR spectra (see [EVK Kerschhaggl GmbH, 2022a] for 
further details). The used spectral range of the sensor was 990 nm to 
1678 nm with a spectral resolution of 3.1 nm/band. The used NIR sensor 
has an on-chip classification engine, which is frequently used in different 
industrial and research applications (e.g., Curtis et al., 2021; Friedrich 
et al., 2022; Kleinhans et al., 2022; Kroell et al., 2022a; Küppers et al., 
2022; Schlögl and Küppers, 2022). The resulting spatial resolution of the 
NIR sensors is 1.08 mm/px and 3.50 mm/px for T1 and T2, respec-
tively2. Four halogen lamps with a power of 400 W each were used as 
emitters (T1: two halogen lamps each from front and back, T2: four 
halogen from front), and the reflection of radiation from the surface is 
captured by the NIR sensor. The sensor was calibrated using a white 
ceramic tile and emitters switch on (white calibration) and the black 
conveyor belt with emitters switched off (black calibration) as targets 
using the EVK SQALAR software (EVK Kerschhaggl GmbH, 2022b). 

2.2.2.2. Classification model. For each test series, a classification model 
was developed to classify each spectrum into background (conveyor 
belt) and user-defined material classes (T1: HDPE, PET; T2: HDPE, PET, 
BC). For background definition, a threshold was defined to segment the 
recordings into background and foreground (materials) based on the 
mean intensity of each spectrum. For material classification, the on- 
sensor CLASS32 algorithm from EVK DI Kerschhaggl GmbH (Raaba, 
Austria) was used. In CLASS32, NIR spectra are firstly preprocessed (first 
derivative, normalization, and smoothing) and then compared to user- 
defined reference spectra. 

For defining NIR reference spectra (cf. Fig. S1 and Fig. S2 in sup-
plementary materials), representative regions of interest were selected 
for each material class. For T1, spectra were selected from the center of 
the plastic flakes to avoid edge effects (Chen and Feil, 2019; Küppers 
et al., 2019a). Accordingly, reference spectra of non-sleeved and 
non-labeled parts of the LWP samples were selected for T2. Additionally, 
overlays of transparent materials on top of other materials were added 
as reference spectra to avoid systematic misclassifications due to mixed 
NIR spectra in the case of transparency (e.g., a PET bottle on top of a 
HDPE bottle is classified as PET), cf. (Kleinhans et al., 2022). 

1 See Kroell et al. (2021) for a detailed method description on the used 3D 
laser triangulation recording.  

2 Length and width of square pixels after spatial calibration (Section 2.3.1). 
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Fig. 2. Materials and methods. (a, d) RGB image, (b, e) resulting NIR false-color image (see [c] and [f] for color legend, respectively), (c, f) distribution of particle 
projection areas per material for test series T1 (plastic flakes) and T2 (post-consumer plastic packaging), respectively; (g) test rig for T1 and T2; F1: vibrating 
conveyor, F2: ascending conveyor, F3: dosing bunker with stamp; (h-k) 3DLT recording for different MFPs in T1; ŌD: mean occupation density. 
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2.3. Data evaluation 

For data evaluation, custom Python 3.10 scripts were developed. For 
data analysis and visualization, primary the open-source packages 
NumPy (Harris et al., 2020) [data storage and data processing], pandas 
(McKinney, 2010; The pandas development team, 2020) [data storage 
and data processing], OpenCV (Bradski, 2000) [pre-processing of 
false-color images], scikit-image (van der Walt et al., 2014) 
[pre-processing of false-color images], imea (Kroell, 2021) [extraction of 
particle measurements], scikit-learn (Pedregosa et al., 2011) [training 
and evaluation of regression models], SciPy (Virtanen et al., 2020) 
[statistics], matplotlib (Hunter, 2007) [data visualization], and seaborn 
(Waskom, 2021) [data visualization] have been applied. 

2.3.1. Calibration and data extraction 
Each image was firstly calibrated to ensure the same spatial resolu-

tion in x- (conveying direction) and y-direction (“square pixels”). Then, 
row-wise pixel counts are extracted from each image within a region of 
interest. Due to the batch-wise tests, lower particle throughputs occur at 
the beginning and the end of each trial, which could distort the results 
due to lower occupation densities (share of the conveyor belt covered by 
material) compared to the MFPs to be simulated. Therefore, an auto-
mated method for defining the region of interest has been developed: 
First, the cumulative distribution of non-background pixels from start 
until end of each trial is calculated and normalized to 100%. Then, the 
region of interest is defined as all rows that lie in an interval of [t1, t2] of 
this cumulative distribution. In this study, the selected interval was 
[20%, 80%], i.e., the middle 60% of the total material area per trial is 
extracted to eliminate lower, unrepresentative belt occupations at the 
beginning and the end of each trial. 

2.3.2. Data aggregation: chunks and moving averages 
To determine time-resolved MFCOs, false-color pixels of a given area 

must first be aggregated before they can be converted to MFCOs. In the 
following, we will refer to these aggregation areas as chunks. 

To quantify the influence of different chunk sizes on SBMC accu-
racies, a range of different chunk sizes is investigated. For broad appli-
cability of the results, we report the investigated chunk sizes in [m2] 
instead of [s] since this allows universal indications independent of 
specific conveyor belt widths and speeds. For defining the chunk area, 
we compare two approaches: (i) the projection area of the total conveyor 
surface incl. material (conveyor area, Achunk,conveyor) and (ii) the projec-
tion area covered by material (material area, Achunk,material). For a given 
application, the area-based chunk definition (Achunk,conveyor or 
Achunk,material) can be converted to a time-based chunk definition based 
on the known belt speed v, conveyor width b, and occupation density OD 
using Eq. (2): 

Δtchunk =
Achunk,conveyor

v*b
=
Achunk,material

OD*v*b
(2) 

For example, a material-area-based chunk size of Achunk, material =

1 m2 on a sensor-based sorter with the parameters v = 3 m /s, b = 2 m 
and OD = 20% equals a time-based chunk size of Δtchunk = 0.83 s. 

2.3.3. Pixel-to-MFCO-models 
While pixel-based NIR classification describes material flows in 

terms of areas, mass-based MFCOs are needed in most SBMC applica-
tions (cf. research gap 1, Section 1.3). Therefore, we differentiate be-
tween three types of MFCOs within this study: The mass share wi (Eq. (3)) 
(DIN 1310, 1984), the volume share φi (Eq. (4)) (DIN 1310, 1984), and 
the area share αi (Eq. (5)). Where mi, Vi, and Ai are the mass, volume, and 
projection area (as recorded by the NIR sensor) of fraction i, and m, V, 
and A are the total masses, volumes, and projections areas, respectively. 

wi =
mi
m

(3)  

φi =
Vi
V

(4)  

αi =
Ai
A

(5) 

As elaborated in Section 2.1.3, material mixtures for T1 are given in 
HDPE volume shares (φHDPE) and we will determine how accurately 
these can be predicted from the area-based HDPE shares (αHDPE) from the 
NIR false-color data. In the following, we will refer to this model as the 
density model. 

For T2, two pixel-to-MFCO models are compared. First, we apply 
material-specific grammages (Eq. (6)) to transform the area-based HDPE 
shares (αHDPE) into estimated mass-based HDPE shares (ŵHDPE) accord-
ing to Kroell et al. (2021) by using Eq. (7) (grammage model). The 
determined grammages for T2 in this study are ρA, HDPE = 2.38 kg/m2, 
ρA, PET = 2.19 kg/m2, and ρA, BC = 1.49 kg/m2. 

ρA,i =
mi
Ai

(6)  

wi =
αi*ρA,i
∑

jαj*ρA,j
(7) 

Second, we apply a regression model to convert area-based (αHDPE) 
into mass-based HDPE shares (ŵHDPE). Therefore, we split the NIR data 
into 70% training and 30% test data. The regression model is then 
trained on the training data and its prediction accuracy is assessed based 
on the test data. To avoid overfitting due to the limited investigated 
HDPE share range (0% – 50%, cf. Section 2.1.3), a polynomial regression 
model (cf. Fahrmeir et al., 2013) with a polynomial degree of two is 
chosen to investigate a first technical feasibility3,4. 

2.3.4. Accuracy assessment 
A variety of different metrics exist to assess the accuracy of mea-

surements (ISO 5725, 2022). To translate the intuition of many practi-
tioners regarding the accuracy of SBMC methods into a single metric, we 
propose the 95% measurement uncertainty (MU95). The MU95 is the 95th 
percentile (P95) of all absolute errors between a set of measurands 
Xmeasured and its corresponding true values Xtrue (Eq. (8)). 

MU95 = P95(|Xmeasured −Xtrue|)

with X = {x1,…, x n} (8) 

The MU95 for a set of measurements indicates that in 95% of all cases 
in the measurements, the true MFCO (xtrue) is in the range 
xmeasured ± MU95. For example, if a plant operator is using an inline-NIR 
material flow monitoring system with a MU95 of 5 wt% and the NIR 
system is displaying a value of xmeasured = 50 wt%, the true MFCO is 
between 45 wt% and 55 wt% in 95 of 100 measurements. The motiva-
tion behind using a 95% percentile instead of, e.g., maximum errors is to 
exclude potential outliers and thus to account for the often high het-
erogeneity of anthropogenic material flows. In addition to the proposed 
MU95 metric, results are reported as mean absolute errors (MAE) and R2- 
scores to provide better comparability for readers used to MAE and R2 

metrics. Accurate measurements are characterized by low MU95 and 
MAE values and R2-scores close to 100%. 

3 Note that the presented approach can be easily extended to more complex 
regression models (e.g., neural networks), if wider ranges of training data is 
available.  

4 The motivation behind using a polynomial regression model of the second 
degree is that (a) the relation between area-based and mass-based MFCOs is 
non-linear (cf. Eq. (7)). A linear regression would result in underfitting, while (b) 
higher polynomial degrees would result in overfitting due to limited training 
data (0%−50% HDPE share). 
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3. Results and discussion 

The following sections aim at answering the research question raised 
in Section 1.4 regarding the influence of different particle types (Section 
3.1), MFPs (Section 3.2), and data processing techniques (Section 3.3). 

3.1. Influence of particle types 

3.1.1. Classifyability 
As evident from Fig. 2b and Fig. 3a-b, the trained classification model 

for T1 can differentiate HDPE, PET and background very accurately. The 
classification model for T2 also succeeds in providing a satisfactory 
distinction between HDPE, PET, BC, and background (Fig. 2e; Fig. 3c,e). 
However, the overall classification accuracy is lower, likely due to three 
major effects:  

(1) Thin-walled areas of PET bottles are sometimes falsely classified 
as background (Fig. 2e, Fig. 3c). Due to their transparency, most 
of the radiation is transmitted through the PET bottles and 
absorbed by the black conveyor belt. Thus, only a small propor-
tion of the radiation is reflected and captured by the NIR sensor 
(cf. Küppers et al., 2019b).  

(2) Combinations of sleeves or labels and packaging material result 
in mixed NIR spectra, which can influence the classification result 
(Chen et al., 2023; Küppers et al., 2019a; Schlögl and Küppers, 
2022). For example, a paper label on top of a HDPE canister has 
mixed NIR spectra of paper and HDPE, which is similar to the NIR 
spectra of BC (made from a HDPE inlay and paper fibers); thus, 
some paper labels are classified falsely as BC (Fig. 2e, Fig. 3c,e).  

(3) We observe some misclassifications from dark parts of BCs as PET 
(Fig. 2e, Fig. 3e), which might be caused by the lower NIR 
reflectance due to the dark color or by a direct reflectance of 
shiny BC parts. 

3.1.2. Correlation between NIR-based and true MFCOs 

3.1.2.1. Plastic flakes (T1). Fig. 3b compares the pixel-based HDPE 
shares obtained through the NIR classification (αHDPE) with the true 
volume-based HDPE share (φHDPE) obtained when creating the material 
mixtures. Overall, the pixel-based and true HDPE shares correlate 
strongly with a Pearson correlation coefficient (Pearson, 1895) of PCCT1 
= 99.5%. 

However, with increasing true HDPE share, the area-based HDPE 
share from the NIR sensor increasingly overestimates the corresponding 
true HDPE share (p < 0.001)5. A likely reason for this overestimation 
could be the different surface-area-to-volume ratios of the investigated 
HDPE and PET flakes, which can be traced back to the different 
comminution behavior of both polymers: Since HDPE is softer, more 
fraying of HDPE occurred during shredding compared to PET 
(cf. Fig. 2a), resulting in an increased projection area of HDPE compared 
to PET (HDPE flakes: 718 m2/m3, PET flakes: 476 m2/m3). As a result, 
the area-based HDPE share is overestimated by +4.90 vol% at φHDPE =

50 vol%. 

3.1.2.2. Plastic packaging articles (T2). Fig. 3d and Fig. 3f compare the 
predicted mass-based HDPE shares based on NIR data using the- 
grammage model (ŵHDPE, cf. Section 2.3.3) with the true mass-based 
HDPE shares (wHDPE). For T2, predicted and true HDPE-shares corre-
late strongly with each other (PCCT2a = 98.8%, PCCT2b = 96.4%), but 
slightly lower than T1. 

Similar to T1, the NIR-based characterization overestimates the true 

HDPE share for T2a and T2b, but because of different reasons. While the 
samples shown far left in Fig. 3c-e represent pure PET and BC fractions 
(wHDPE = 0%) in article-based manual sorting analysis, the pixel-based 
NIR characterization identifies HDPE shares of 5.4 a% (5.9 wt%) and 
2.0 a% (3.2 wt%) for T2a and T2b, respectively. Reason for this differ-
ence is the different counting basis of both methods: While HDPE caps, 
e.g., on PET bottles, count as “PET” in manual analysis, they are 
(correctly) classified and counted as “HDPE” in the pixel-by-pixel NIR 
characterization. 

The HDPE-overestimation decreases with higher true HDPE share, as 
the material flow contains more “true” HDPE from HDPE packaging and 
fewer “false” HDPE caps from PET bottles. Additionally, labels on true 
HDPE packaging classified as BC reduce the predicted HDPE share and 
simultaneously increase the predicted share of other material classes 
(e.g., paper-based labels on HDPE containers that are classified as BC). 

3.2. Influence of material flow presentation 

3.2.1. Plastic flakes (T1) 
HDPE-overestimation in T1 differs significantly between different 

MFPs (mean over all trials: SI: +2.63%, MO: +0.92%, H1: +0.08%, H2: 
+0.32%), see Fig. 3b. Quantitatively, we can show that the HDPE- 
overestimation decreases with increasing occupancy density (p = 0.04). 

A possible reason for this effect could be the lower thickness of frays 
compared to the main part of the flakes: If a HDPE fray overlays the black 
conveyor belt, it is usually classified either as HDPE or as background 
(depending on material thickness and background definition in the NIR 
classification; cf. Fig. 2b). At higher occupation densities, HDPE flakes lie 
on top of other flakes. If a HDPE fray is on top of another HDPE flake, it is 
usually classified as HDPE, but if a HDPE fray overlays a PET flake, a 
mixed HDPE/PET spectra can occur due to the penetration depth of NIR 
(Chen et al., 2021b, 2023). Since mixed PET/HDPE spectra from trans-
parent PET on top of HDPE are trained as “PET” to the classification 
model6 (cf. Section 2.2.2.2), the HDPE frays on top of PET might be 
classified as PET in some cases, resulting in a lower HDPE-overestimation 
at higher occupation densities. 

3.2.2. Plastic packaging articles (T2) 
No significant differences are observed when comparing the pre-

dicted MFCOs of SI vs. MO as well as H1 vs. H2. In contrast, the pre-
dicted MFCOs differ significantly between non-overlapping (SI, MO) and 
overlapping (H1, H2) MFPs, which might be explained by the following 
two mechanisms. 

3.2.2.1. Classification behavior at different MFPs. For T2a, HDPE- 
overestimation of pure fractions (wHDPE = 0%) is significantly 
(p < 0.001) higher for non-overlapping (SI: +5.87 wt%, MO: +5.84 wt 
%) compared to overlapping MFPs (H1: +3.61 wt%, H2: +3.60 wt%). A 
possible explanation for this is the better detectability of thin-walled 
PET bottles on top of other materials in comparison to the black 
conveyor belt: Two thin-walled PET bottles on top of each other have a 
higher overall material thickness, which results in a higher mean in-
tensity of the reflected NIR spectra that is usually more often classified as 
PET instead of background. A thin-walled PET bottle on top of HDPE 
packaging results in mixed PET/HDPE spectra, which are trained as PET 
to the classification model (cf. Section 2.2.2.2). Thus, less PET is 
recognized at non-overlapping MFPs, which results in higher predicted 
HDPE shares compared to overlapping MFPs. 

For T2b, the HDPE-overestimation is higher at overlapping vs. non- 
overlapping MFPs (e.g., at wHDPE = 0%: H1: +4.47 wt%, H2: +4.37 

5 p-values express the level of significance: differences are considered statis-
tically significant if the p-value is lower than 0.05. 

6 HDPE on top of PET is trained as “HDPE”, but the PET influence on a 
PET+HDPE spectra is lower than the PET influence on HDPE+PET due to the 
opaque color of HDPE flakes compared to transparent color of PET in this study 
(cf. Section 2.1.1). 
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Fig. 3. Influence of particle types and MFP on trial-based prediction errors. (a, c, e) randomly selected quadratic sections of false color images per MFP and true 
HDPE share; (b, d, f) comparison between predicted and true HDPE share per trial for T1, T2a, and T2b, respectively. 
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wt% vs. SI: +3.24 wt%, MO: +3.09 wt%). The causes of this behavior 
cannot be reliably assessed on the data basis of this study. A possible 
hypothesis for this effect could be different particle orientations, which 
could result in more HDPE caps facing toward the NIR sensor at over-
lapping MFPs. However, further research is needed to clarify the 
mechanisms behind these observations. 

3.2.2.2. Segregation effects. In both test series, HDPE shares are 
disproportionately overestimated with increasing HDPE share: For T2a, 
the difference between overlapping vs. non-overlapping MFPs 
(wHDPE, (H1,H2) −wHDPE, (SI,MO)) increases from -2.2 wt% (wHDPE = 0%) to 
+5.8 wt% (wHDPE = 50%); for T2b, HDPE-overestimation increases from 
+1.3% (wHDPE = 0%) to +13.3% (wHDPE = 50%), cf. Fig. 3d,f. 

A possible reason for the accumulation of HDPE articles on the 
captured material flow surface could be higher particle volumes and 
three-dimensional shapes of HDPE packaging compared to smaller and/ 
or flattened PET bottles and BCs. Due to the brazil nut effect (Rosato et al., 
1987), larger HDPE packaging could have accumulated on the material 
flow surface. Since NIR is a surface measurement method, accumulation 
of larger articles on the material flow surface will lead to an over-
estimation of the corresponding material fraction compared to the true 
MFCO. 

3.3. Influence of data processing techniques 

This section investigates two data processing techniques to increase 
the accuracy of NIR-based determined MFCOs: Appropriate chunk sizes 
(Section 3.3.1) aim at reducing random measurement errors (i.e., 
increasing precision [ISO 5725, 2022]), e.g., due to different particle 
orientations or particle artifacts. Pixel-to-MFCO-models (Section 3.3.2) 
aim at reducing systematic measurement errors (i.e., increasing trueness 
[ISO 5725, 2022]), e.g., due to different counting basis of composite 
materials (cf. Section 3.1) or segregation errors (cf. Section 3.2).7 

3.3.1. Chunk sizes 
Fig. 4 shows the influence of chunk sizes on prediction accuracies 

(quantified by the MU95 metric) and the resulting MFCO time series. As 
shown in Fig. 4a-l, MUs decrease continuously with increasing chunk 
size and asymptotically approach a plateau, which represents the sys-
tematic differences between NIR-based and manual material flow 
characterization known from Fig. 3. 

3.3.1.1. Definition of reduction ratios. From Fig. 4a-l, we observe a 
trade-off between low chunk size and low MU: Smaller chunks enable a 
lower latency between data acquisition and delivery of chunk-based 
information and higher temporal data resolution. Larger chunks, how-
ever, can smooth out unwanted fluctuations and reduce data noise. 

To quantitatively describe different weighings between MU and 
chunk size, we define reduction ratios (RR, Eq. (9)) that describe the 
relative reduction of MU from raw false-color data (MU95,max) towards 
the MU plateau (MU95,min): 

RR =
MU95,max −MU95,i

MU95,max −MU95,min
(9) 

Based on the reduction ratios, we define three RR scenarios (80%, 
95%, and 99% RR) that describe three different weighing between MU 
and chunk size (from a focus on small chunk sizes [RR = 80%] to focus 
on low MUs [RR = 99%]). 

3.3.1.2. Influence of particle types and sizes. As shown in Fig. 4a-l, MUs 
decrease significantly faster for T1 (99% RR at 3.14 m2 [mean over all 
T1 trials]) compared to T2a (13.32 m2) and T2b (16.88 m2). Two 
possible reasons for the faster decrease of T1 compared to T2 could be (i) 
higher homogeneity of plastic flakes from T1 compared to plastic 
packaging articles in T2 (e.g., due to composite packaging, a higher 
variety of particle sizes and shapes, and post-consumer effects [cf. 
Fig. 2a,d]) as well as (ii) larger particle sizes in T2 compared to T1 (cf. 
Fig. 2c,f), which might require larger chunk sizes for smoothing. 

3.3.1.3. Influence of MFPs and chunk size definition. As shown in 
Fig. 4a,e,I, MUs for SI and MO decrease slower and later compared to H1 
and H2, when a conveyor-area-based chunk size definition is used (cf. 
Section 2.3.2). A likely explanation for this observation are different 
occupation densities for different MFPs: While 1 m2 conveyor area for T1 
at SI contains on average 0.08 m2 material, 1 m2 conveyor area at MO, 
H1, and H2 contain 0.34 m2, 0.72 m2, and 0.84 m2 material, respectively 
(cf. Fig. 2h-k). Thus, a higher amount of material is aggregated in a 
chunk at higher occupation densities, which results in stronger 
smoothing. 

In contrast, when a material-area-based chunk size definition is used, 
MUs decrease almost simultaneously and at a similar pace for different 
MFPs (Fig. 4b,f,j). The resulting curve trajectories are thus more 
generalizable and could be used, e.g., to derive chunk sizes in specific 
SBMC applications. 

3.3.1.4. Influence of target material share. Similar chunk sizes are 
needed to achieve the same RRs across different HDPE shares (cf. Fig. 4c, 
d,g,h,k,l) and no statistically significant correlation between HDPE share 
and chunk size at different RRs is found (conveyor-area-based chunk 
size: ̄p = 0.544, material-area-based chunk size: ̄p = 0.668 [mean p-value 
across all test series and RRs]). 

3.3.1.5. Influence of chunk sizes on the resulting MFCO time series. 
Fig. 4m-x shows the influence of applying different chunk sizes to an 
exemplary time series (50% HDPE true share) across different MFPs and 
test series. For all test series, a decreased deviation of the raw sensor 
data from SI, over MO, H1 to H2 is observed (mean standard deviation of 
raw sensor data over all test series and HDPE shares: SI: 20.9%, MO: 
16.2%, H1: 9.8%, H2: 8.7%). While finer details such as small fluctua-
tions in the HDPE share are still present at 80% RR, these are smoothed 
out at 95% and 99% RR (cf. Fig. 4m-p). 

3.3.2. Pixel-to-MFCO-models 
As we have shown in Section 3.1 and Section 3.2, systematic effects 

such as different area-to-volume ratios, composite effects, and segrega-
tion errors lead to less accurate MFCO predictions. This raises the 
question if information about these effects can be used to correct them 
and make the MFCO predictions more accurate. 

To answer this question, Fig. 5 shows the ground truth data and 
compares the prediction curves of the investigated models (T1: density 
and regression model, T2: grammage and regression model): True HDPE 
shares and pixel-based shares are shown on the x- and y-axis, respec-
tively, and boxplots indicate the distribution of the raw data after 
applying a moving average (99% RR). Prediction accuracies of both 
models at different MFPs are quantified in Table 1 using the MU95, MAE, 
R2 metric (cf. Section 2.3.4). 

In all cases, the regression model outperforms the density/grammage 
models. For T1 (Fig. 5a), the density model achieves a mean MU95 of 
5.6 vol% over all MFPs due to the HDPE-overestimation (frays) dis-
cussed in Section 3.1.2.1 and Section 3.2.1. In contrast, the polynomial 
regression model successfully compensates higher area-based HDPE 
shares and reduces the MU95 by a factor of 4.6 down to 1.2 vol%. 

For T2a (Fig. 5b), the grammage model results in similar predictions 
as a naïve prediction would predict (ŵi = αi), due to similar grammage 

7 To avoid an overrepresentation of the HDPE shares between 0% - 10% (due 
to the trials at 0.1%, 0.5%, 1%, 2.5%, 5% HDPE share), the ground truth data in 
Section 3.3 is limited to 0%, 10%, 20%, 30%, 40%, and 50% true HDPE share to 
achieve an equidistant distribution. 
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Fig. 4. Influence of chunk size and chunk definition on measurement uncertainty (MU). (a-l) influence of chunk size on MU for different test series, MFPs, and HDPE 
shares. (m-x) effect of exemplary chunk sizes (80%, 95%, and 99% reduction ratio) on exemplary time series (predicted HDPE share over time) on the example of 
50% true HDPE share; T1: percentages in vol%, T2: percentages in wt%. 
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of HDPE and PET (caused partially by a lower PET recognition compared 
to HDPE) (cf. Section 3.1.1). For T2b (Fig. 5c), the grammage model 
corrects the different grammages of HDPE and BC and is thus closer to 
the SI and MO data. As a consequence, the grammage model predictions 
are further away from the H1 and H2 data since the segregation errors 
are not included. In contrast, the regression model fits the training data 
of both test series and successfully corrects, e.g., HDPE-overestimations 
due to segregation errors at H1 and H2 or compound effects (HDPE caps) 
downward (Fig. 5c). On average, MUs are reduced by a factor of 3.5 
(MU95,grammage = 8.6 wt% → MU95,regression = 2.4 wt%). 

The final prediction results when combining sufficiently high chunk 
sizes (cf. Section 3.3.1) with the polynomial regression model of degree 
two show that NIR-based MFCOs determination for plastic flakes and 
LWP packaging is technically feasible. For plastic flakes (T1), mean 
MU95 values of 1.2 vol% (MAE: 0.5 vol%, R2: 99.9%) are achieved, for 
post-consumer plastic packaging (T2), mean MU95 values were located 
at 2.4 wt% (MAE: 1.0 wt%, R2: 99.4%). 

4. Conclusion and outlook 

SBMC methods promise to significantly improve post-consumer 
plastic recycling by enabling new applications of sensor technology 
such as adaptive process control or sensor-based quality control (Kroell 
et al., 2022a). Fulfilling these promises, however, is only feasible if the 
generated SBMC data is accurate enough. 

While numerous studies have demonstrated high accuracy of NIR- 

based plastics classification at the pixel and particle level, it has been 
unclear what accuracies can be achieved at the material flow level. This 
study assessed the accuracy of NIR-based MFCO determinations based 
on three binary mixtures (T1: HDPE and PET plastic flakes, T2a: post- 
consumer HDPE packaging and PET bottles, T2b: post-consumer HDPE 
packaging and BCs) and investigated the effects of particle types, MFPs, 
and data processing techniques on the achievable accuracy. 

User-defined settings in the NIR classification model have a large 
impact on NIR-based MFCO predictions of both particle types. Pre-
dicted MFCOs are especially influenced by (i) the discrimination be-
tween background and (transparent) materials and (ii) the classification 
of mixed NIR spectra (e.g., labels and sleeves for plastic packaging). For 
plastic flakes (T1), different surface area-to-volume ratios can result in 
significant over- and underestimations of the true material share, if area- 
based NIR classifications are used to determine volume- or mass-based 
MFCOs. For post-consumer plastic packaging (T2), prediction errors 
result mainly from the different counting basis of article-based manual 
sorting and pixel-based NIR characterization. For instance, it was 
determined that pure PET bottle (T2a) and BC (T2b) fractions from LWP 
contain approx. 5.4 a% and 2.1 a% HDPE, e.g., due to HDPE bottle caps, 
respectively. 

Concerning the material flow presentation, it is important to 
distinguish between non-overlapping (SI, MO) and overlapping MFPs 
(H1, H2). On the one hand, material overlays influence the NIR classi-
fication behavior in that transparent materials are better detected. On 
the other hand, segregation errors were detected which led to an 

Fig. 5. Comparison of different pixel-to-MFCO-models at 99% reduction ratio (material-based chunk sizes: T1: 3.14 m2, T2a: 13.32 m2, T2b: 16.88 m2).  

Table 1 
Accuracy of investigated pixel-to-MFCO-models at 99% reduction ratio (material-based chunk sizes: T1: 3.14 m2, T2a: 13.32 m2, T2b: 16.88 m2); highest accuracies per 
test series are highlighted in bold.  

Metric Test series Model SI MO H1 H2 mean 

MU95 T1 Density 7.4% 4.1% 4.0% 7.0% 5.6% 
Regression 1.3% 0.8% 1.0% 1.8% 1.2% 

T2a Grammage 5.9% 5.9% 8.6% 9.2% 7.4% 
Regression 3.9% 2.5% 2.7% 2.0% 2.8% 

T2b Grammage 3.4% 4.2% 14.7% 17.3% 9.9% 
Regression 1.9% 1.3% 1.5% 3.7% 2.1% 

MAE T1 Density 4.2% 1.7% 1.2% 2.8% 2.5% 
Regression 0.5% 0.3% 0.3% 0.8% 0.5% 

T2a Grammage 3.9% 3.8% 5.2% 6.2% 4.8% 
Regression 1.7% 1.0% 0.9% 0.8% 1.1% 

T2b Grammage 1.8% 2.5% 11.3% 12.3% 7.0% 
Regression 0.8% 0.7% 0.6% 1.3% 0.8% 

R2 T1 Density 93.7% 98.5% 99.2% 96.7% 97.0% 
Regression 99.8% 99.9% 99.9% 99.7% 99.9% 

T2a Grammage 91.3% 92.5% 91.8% 88.1% 90.9% 
Regression 98.5% 99.4% 99.5% 99.6% 99.3% 

T2b Grammage 97.9% 97.2% 64.7% 58.0% 79.5% 
Regression 99.7% 99.8% 99.8% 98.9% 99.5%  
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overrepresentation of larger HDPE plastic packaging compared to 
smaller PET bottles and BCs on the material flow surface captured by the 
NIR sensor (brazil nut effect). For instance, HDPE contents were over-
estimated by an additional +5.8 wt% (T2a) and +13.3 wt% (T2b) for 
overlapping (H1, H2) compared to non-overlapping MFPs (SI, MO) at 
wHDPE = 50 wt%. 

Adequate data processing can significantly correct the effects pre-
sented above and thus increase the accuracy of NIR-based MFCOs: 
Random errors (e.g., due to different particle orientations) can be 
compensated by aggregating the data over sufficiently large chunk sizes. 
The influence of chunk sizes on measurement accuracies can be 
described by the material area per chunk: with increasing chunk size, the 
MU decreases asymptotically. Systematic errors, such as composite ef-
fects of plastic packaging and segregation errors, can be compensated 
through regression models. By using a polynomial regression model 
(polynomial degree two), the MU was on average reduced by a factor of 
4.6 and 3.5 compared to density- or grammage-based conversion ap-
proaches for T1 and T2, respectively. By combining all findings, accu-
racies of MU95 = 1.2 vol% (MAE = 0.5 vol%; R2 = 99.9%) for plastic 
flakes (T1) and MU95 = 2.4 wt% (MAE  = 1.0 wt%; R2 = 99.4%) for 
plastic packaging (T2) could be achieved. 

Our results show that NIR-based determination of mass-based 
MFCOs in mechanical recycling of post-consumer plastics is techni-
cally feasible. However, they also indicate how significantly external 
factors like particle characteristics and MFPs can influence measurement 
accuracy and thus highlight the importance of material- and application- 
specific data processing techniques. 

In future research, our results should be further scaled up. In addition 
to plant-scale investigations, we consider investigations on non-binary 
LWP mixtures; transfer to other polymers, particle size distributions, 
and material flows; as well as gaining a better understanding of segre-
gation processes of anthropogenic material systems like LWP to be of 
particular importance. 

Combining inline NIR sensors and adequate data processing tech-
niques provides meaningful material information not only at the pixel 
and particle level but also at the material flow level and beyond. Based 
on the technical feasibility demonstrated in this study, new SBMC ap-
plications can be developed to accelerate the transition to more sus-
tainable and efficient post-consumer plastics loops. 
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Schlögl, S., Küppers, B., et al., 2022. Quantifying the delabelling performance using 
sensor-based material flow monitoring. In: Greiff, K, Wotruba, H, Feil, A, Kroell, N, 
Chen, X, Gürsel, D, et al. (Eds.), 9th Sensor-Based Sorting & Control, 13.04.2022 - 
14.04.2022: Aachen; 2022.  

Sesotec GmbH. Recycling sorting systems with conveyor belt, 2022. https://www.sesotec 
.com/emea/en/products/groups/recycling-sorting-systems-with-conveyor-belt 
(accessed August 16, 2022). 

Shen, M., Huang, W., Chen, M., Song, B., Zeng, G., Zhang, Y., 2020. Micro)plastic crisis: 
un-ignorable contribution to global greenhouse gas emissions and climate change. 
J. Clean. Prod. 254, 120138 https://doi.org/10.1016/j.jclepro.2020.120138. 

STEINERT GmbH. STEINERT.view, 2022. https://steinertglobal.com/de/steinert-digit 
al/dashboard-view/(accessed August 16, 2022). 

The pandas development team. pandas-dev/pandas: pandas: zenodo, 2020. 
TOMRA System ASA. TOMRA Insight, 2022. https://www.tomra.com/en/solutions/w 

aste-metal-recycling/tomra-insight (accessed August 16, 2022). 
van der, Walt S, Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., 

Yager, N., et al., 2014. scikit-image: image processing in Python. PeerJ 2, e453. 
https://doi.org/10.7717/peerj.453. 

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., 
et al., 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. 
Nat. Methods 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2. 

Waskom, M.L., 2021. seaborn: statistical data visualization. J. Open Source Softw. 6 (60), 
3021. https://doi.org/10.21105/joss.03021. 

Zheng, J., Suh, S., 2019. Strategies to reduce the global carbon footprint of plastics. Nat. 
Clim. Chang. 9 (5), 374–378. https://doi.org/10.1038/s41558-019-0459-z. 

N. Kroell et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0019
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0019
https://doi.org/10.1016/j.mex.2022.101686
https://doi.org/10.1126/sciadv.1700782
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.37307/j.1863-9763.2021.07.03
https://doi.org/10.37307/j.1863-9763.2021.07.03
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0025
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0025
https://doi.org/10.1126/science.1260352
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0027
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0027
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0027
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0027
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0027
https://doi.org/10.21105/joss.03091
https://doi.org/10.21105/joss.03091
https://doi.org/10.1016/j.wasman.2022.05.015
https://doi.org/10.1016/j.wasman.2022.05.015
https://doi.org/10.1016/j.wasman.2021.10.017
https://doi.org/10.1016/j.wasman.2021.10.017
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0031
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0031
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0031
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0031
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0031
https://doi.org/10.31025/2611-4135/2019.13816
https://doi.org/10.1177/0734242X19855433
https://doi.org/10.1177/0734242X19855433
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0034
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0034
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0034
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0034
https://doi.org/10.1016/j.resconrec.2019.104619
https://doi.org/10.1016/j.resconrec.2019.104619
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0036
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0036
https://doi.org/10.1016/j.envres.2008.07.025
https://doi.org/10.1016/j.envres.2008.07.025
https://doi.org/10.1002/wene.360
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/10.1098/rspl.1895.0041
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0040
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0040
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0040
https://www.pellencst.com/products
https://plasticseurope.org/knowledge-hub/the-circular-economy-for-plastics-a-european-overview-2/
https://plasticseurope.org/knowledge-hub/the-circular-economy-for-plastics-a-european-overview-2/
https://plasticseurope.org/knowledge-hub/the-circular-economy-for-plastics-a-european-overview-2/
https://redwave.com/en/products?setLang=1
https://doi.org/10.1103/PhysRevLett.58.1038
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0046
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0046
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0046
http://refhub.elsevier.com/S0921-3449(23)00010-1/sbref0046
https://www.sesotec.com/emea/en/products/groups/recycling-sorting-systems-with-conveyor-belt
https://www.sesotec.com/emea/en/products/groups/recycling-sorting-systems-with-conveyor-belt
https://doi.org/10.1016/j.jclepro.2020.120138
https://steinertglobal.com/de/steinert-digital/dashboard-view/
https://steinertglobal.com/de/steinert-digital/dashboard-view/
https://www.tomra.com/en/solutions/waste-metal-recycling/tomra-insight
https://www.tomra.com/en/solutions/waste-metal-recycling/tomra-insight
https://doi.org/10.7717/peerj.453
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.03021
https://doi.org/10.1038/s41558-019-0459-z

	Near-infrared-based determination of mass-based material flow compositions in mechanical recycling of post-consumer plastic ...
	1 Introduction
	1.1 Mechanical recycling of post-consumer plastics
	1.2 Sensor-based material flow characterization
	1.3 Accuracy of sensor-based determined MFCOs
	1.4 Aim and research question

	2 Material and methods
	2.1 Materials and mixtures
	2.1.1 Plastic flakes (T1)
	2.1.2 LWP samples (T2)
	2.1.3 Binary mixtures

	2.2 Experimental setup
	2.2.1 Material flow presentation
	2.2.2 NIR recording and classification
	2.2.2.1 Sensor
	2.2.2.2 Classification model


	2.3 Data evaluation
	2.3.1 Calibration and data extraction
	2.3.2 Data aggregation: chunks and moving averages
	2.3.3 Pixel-to-MFCO-models
	2.3.4 Accuracy assessment


	3 Results and discussion
	3.1 Influence of particle types
	3.1.1 Classifyability
	3.1.2 Correlation between NIR-based and true MFCOs
	3.1.2.1 Plastic flakes (T1)
	3.1.2.2 Plastic packaging articles (T2)


	3.2 Influence of material flow presentation
	3.2.1 Plastic flakes (T1)
	3.2.2 Plastic packaging articles (T2)
	3.2.2.1 Classification behavior at different MFPs
	3.2.2.2 Segregation effects


	3.3 Influence of data processing techniques
	3.3.1 Chunk sizes
	3.3.1.1 Definition of reduction ratios
	3.3.1.2 Influence of particle types and sizes
	3.3.1.3 Influence of MFPs and chunk size definition
	3.3.1.4 Influence of target material share
	3.3.1.5 Influence of chunk sizes on the resulting MFCO time series

	3.3.2 Pixel-to-MFCO-models


	4 Conclusion and outlook
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Supplementary materials
	References


