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Abstract

Background: Sensor-based sorting (SBS) units are a crucial part of lightweight
packaging (LWP) waste sorting plants. Compared to sorting trials under technical
lab conditions, significantly lower sorting performances are observed in many LWP
sorting plants. One reason for this discrepancy is assumed to be the insufficient
material flow representation under real sorting conditions. Aim: This paper aims to
quantitatively determine how material flow presentation influences the performance
of SBS units on the example of LWP waste. Method: In a case study, near-infrared
(NIR) sensors were used to monitor the input, eject and drop fraction of an industrial-
scale, NIR-based SBS unit at different troughputs. Result: Preliminary results show
that higher occupation densities and insufficient material singling lead to significantly
a lower sorting performance both in terms of purity of the eject fractions and yield
of eject materials. Conclusion: The findings suggest that much of the discrepancy
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between theoretically possible and practically achieved LWP sorting performance
can be explained by suboptimal material flow presentation. Optimized material flow
presentation thus might offer considerable, but so far largely untapped, optimization
potentials in LWP sorting.

1 Introduction

Global plastic production has grown from 2 Mt to 380 Mt between 1950 and
2015 (Geyer et al., 2017) and is expected to double again over the next 20 years
(European Commission, 2018). The current production, usage, and end-of-life
disposal of plastics cause severe environmental damages, e.g., greenhouse
gas (GHG) emissions (Zheng & Suh, 2019) and pollution of global ecosystems
(Jambeck et al., 2015). Plastic recycling and the substitution of primary by recycled
plastics can significantly lower the environmental impacts of plastics (Astrup et al.,
2009; Perugini et al., 2005). For example, substituting 1 Mg of primary plastic with
recycled plastic achieves GHG savings between 0.9 Mg and 2.2 Mg CO,e (Turner
etal., 2015).

Germany is the largest producer of post-consumer plastic waste in Europe and
generated about 5.35 Mt/a post-consumer plastic wastes in 2019; the majority (59
wt%) of which is collected as post-consumer lightweight packaging (LWP) waste
with an amount of 3.16 Mt/a (Conversio Market & Strategy GmbH, 2020). After
collection, LWP waste is firstly sorted by LWP sorting plants into preconcentrates
and a remaining sorting residue. Preconcentrates are further refined into secondary
raw materials by specialized recycling plants and then re-enter the anthropogenic
material cycle (Feil & Pretz, 2020). Although several improvements were introduced
to LWP sorting (Feil et al., 2021), the overall performance of LWP sorting in Germany
remains unsatisfactory: In 2019, only about 19 wt% of post-consumer plastic waste
could be converted into recyclates, and only 8 wt% were used to substitute virgin
material (Conversio Market & Strategy GmbH, 2020).

Considerable material losses towards energy recovery occur both during the
collection with about 30 wt% as well as in sorting and recycling plants with about
35 - 40 wt% each of the respective inputs (Kuchta, 2020). As high material losses in
recycling plants are partly caused by insufficient purity of preconcentrates (Dehoust
& Christiani, 2012), technical optimization of LWP sorting plants plays a key role in
improving the performance of post-consumer plastic recycling.

36



Assessment of sensor-based sorting performance for lightweight packaging waste through sensor-based material

1.1 State of the art and challenges in LWP sorting

In LWP sorting plants, the input material flow is firstly preconditioned (liberation,
sieving, wind-shifting, ballistic separation) before ferrous and non-ferrous metals
as well as beverage cartons are sorted out. The preconditioned material flow then
enters the heart of any modern LWP sorting plant: A sensor-based sorting (SBS)
cascade typically containing more than 20 SBS units to sort the material flow into
the desired preconcentrates. (Feil et al., 2021)

SBS units in LWP sorting are almost exclusively belt sorters, i.e., the material
flow is presented on acceleration belts (v = 3 m/s) to the sensor. Compressed air
nozzle bars are then used to sort the material flow in a drop and eject fraction,
depending on the chosen sorting recipe. Common target fractions in SBS for LWP
are polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET),
polystyrene (PS), beverage cartons (BC), and paper & cardboard (PPC). As all
target fractions of SBS in LWP have distinct near-infrared (NIR) spectra, NIR-based
sorters are primarily used in LWP-sorting. (Feil et al., 2021; Feil & Pretz, 2020)

Modern SBS equipment can, according to manufacturers, achieve technical
efficiencies of 2 95 wt% under laboratory and pilot plant conditions (4R Sustainability,
2011). However, the actual achieved product purities and observed material losses
fall far short of these expectations (see above).

One main reason for the poor sorting results in industrial-scale LWP sorting is
assumed to be the inadequate material flow presentation to the SBS unit (Feil et al.,
2019): For optimal sorting results, material flows have to be presented as a singled
monolayer to the SBS units. If particles overlap or touch each other, false-negative
(material supposed to end in the eject fraction ends in the drop fraction) or false-
positive (vice versa) sorting results occur, which lead to lower yield and purities,
respectively. Two physically plausible mechanisms for false sorting results are:

(M1) False sorting decisions due to overlapping: All sensors currently
applied in LWP sorting are surface measurement technologies. Thus,
in the case of overlapping, only the material on top is considered in
the sorting decision, leading to false-negative or false-positive sorting
decisions, depending on the material on top. Additionally, mixed spectra
(NIR) or colors (VIS) can lead to false sorting decisions in case the
material on top is (semi-)transparent.
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(M2) Entrainment of drop particles: In the case of overlapping or touching
particles, turbulence of air valves can lead to false-positive material
ejects (especially for light material fractions such as films).

1.2 Addressed research gap

This study aims to quantitatively determine how the material flow presentation
influences the sorting results and how much of the discrepancy between theoretically
possible and real-world observed sorting results can be explained by insufficient
material flow presentation to SBS units in LWP sorting plants.

Recent studies have shown that the material throughput strongly influences the
SBS performance of chute sorters in lab-scale (Kippers, Schlégl, et al., 2020;
Klppers, Seidler, et al., 2020). However, the results are only partly transferable to
industrial-scale SBS units since (i) LWP sorting is almost exclusively performed on
belt sorters with significantly different feeding characteristics, (ii) the investigated
working width (500 mm) is significantly lower compared to industrial applications
(influence of boundary areas), and (iii) the characteristics of the investigated test
material (idealized plastic chips) are not comparable with real-world post-consumer
wastes. Additionally, investigations with industrial SBS equipment (Curtis et al.,
2021) show that the throughput fluctuations hamper SBS performance but are
limited to comparing two scenarios (fluctuating and non-fluctuating throughput).

One limitation of current SBS research is that existing performance assessment
methods are based on manually determining the composition and quantity of eject
and drop fractions (i.e., manual sorting), which is time- and cost-intensive. Therefore,
only a small number of data points can be determined, limiting the statistical
confidence of obtained results. Furthermore, sorting results are only available once
the sorting trial is finished and therefore cannot be measured time-resolved and
are limited to batch-wise trials. To overcome these limitations, we propose a new
assessment method based on sensor-based material flow monitoring (SBMM), in
which additional sensors are used to determine the composition and quantity of the
eject and drop fractions.
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2 SBS performance assessment based on SBMM

In the proposed assessment methodology, additional sensors are used to monitor
(i) the material flow presentation on the acceleration belt and (ii) the sorting result,
i.e., quantity and composition of the eject and drop fraction (Figure 1).

N

Assessment of

material flow
presentation SBMM

sensor (sensor-based)

.................... g sorting process

Input —

Drop

Figure 1: Concept for SBS performance assessment through SBMM.

2.1 Assessment of material flow presentation
To describe the material flow presentation on the acceleration belt quantitatively,
this section define different material flow presentation indicators.

Occupation density (OD). Traditional assessment of material flow presentation
of acceleration belts is based on the occupation density (OD), which describes the
share of the acceleration belt area that is covered by material (Kippers, Schlégl,
et al., 2020):

_ Acuvered
0D = —— (1)

Abelt

Where 4, , is the area flow (projected area per time unit as presented to the sensor)
L) @nd belt width (b,
is the area flow of belt area that is covered by material.

of the acceleration belt, which is a function of belt speed (v
(Eq. (2)), and 4

bcll)

covered

39



Sensor-Based Sorting & Control 2022

Abelt = Vpelt * Dpett (2)

The OD can be calculated deterministically without prior knowledge about the
material flow. However, as shown exemplarily in Figure 2, the OD neglects the
material distribution on the conveyor surface (e.g., overlapping), which may
influence the sorting result (see Mechanism M1, Section 1.1).

(a) (b) (c)

O Particle Singled region Centroid distance
+ Centroid Clustered region

Figure 2: Exemplary material distributions with similar ODs, but
(a) high, (b) medium, and (c) low patrticle singling.

Singling ratio (SR). To overcome the limitations of the occupancy density indicator,
we propose a new indicator, the singling ratio (SR). To determine the SR, we
classify all associated, covered areas (regions) into (i) singled regions (regions
that contain only one particle) and (ii) clustered regions (regions that contain two
or more touching or overlapping particles), cf. Figure 2. The SR then describes the
percentage of covered area that is singled:

A

singled Asin led
SR = - 8 =8

Asingled + Aclustered Acovered

3)

A SR of 1 indicates perfect singling, while a SR of 0 means that all particles touch
or overlap with at least one other particle.
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Particle distances. While the SR describes the singulation of the material flow, it
ignores the proximity to nearby regions, which may influence the sorting result (see
Mechanism M2, Section 1.1). Different metrics can describe the distance between
regions on a conveyor surface. Here, we use the Euclidian centroid-to-centroid
distance between a given region i and its neighbor region j, where x and y are the
coordinates of the respective centroid and region j is the k-th nearest neighbor of
region i:

CDy(i,j) = J(xi = %)%+ (v — ¥)? (4)

On a material flow level, the distances of all » regions in a given evaluation area
result in a distribution of individual centroids distances, which can be summarized
through statistical indicators such as the arithmetic mean:

n

1

CD, = EZ CDy; (5)
i=1

2.2 Assessment of sorting performance

In any SBS task, particles can be divided into target (index T) and non-target
particles (index nT). Optimal sorting is defined by maximizing target and minimizing
non-target particles in the eject fraction.

Four different sorting results can occur: (i) target material ends in the eject fraction

(m true positive [TP]), (ii) target material ends in the drop fraction (’hmmp? false-

; true negative

T.cjccl;
negative [FN]), (iii) non-target material ends in the drop fraction (s
[TN]), and (iv) non-target material in the eject fraction (7

nT,drop

false-positive [FP]).

nT.eject’

Thus, the sorting result can be interpreted as a 2 x 2 confusion matrix:

mT,eject (TP) mnT,eject (FP)

Confusion matrix: | . .
mT,drop (FN) mnT,drop(TN) (6)

Commonly, two indicators are used to evaluate the sorting task (Feil et al., 2016):
Purity (Eq. (7)) describes the share of the target fraction in the eject fraction, i.e.,
evaluation of the first confusion matrix row.
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mT,eject _ mT,e]'ect (7)

Cw,eject -

meject mT,eject + mnT,e]’ect

Yield (Eq. (8)) describes how much of the target fraction from the input material flow
is sorted into the eject fraction, i.e., evaluation of the first confusion matrix column.

Rw — mT,e]‘ect — mT,e]‘ect (8)

mT,input mT,eject + mT,drop

Although purity and yield are of high practical importance, both indicators must
always be considered to evaluate the sorting performance. To obtain a single
performance indicator, we propose to unite purity and yield into the F,-score, which
is the harmonic mean of both values (Tharwat, 2021):

Cweiect © R
F1 —2. w,eject w (9)
Cw,eject + Rw

F -scores range between 0 and 1. An F-score of 1 indicates a perfect
sorting performance (c, ., and R =1),), while the F -score becomes zero if
purity or yield become zero.

In cases where purity and yield are not of equal importance, it is possible
to weigh both indicators through a factor  in the -score (Eq. (10)), which
leads to yield being weighted g-times more than purity (Tharwat, 2021).

2 Cw,eject Rw
Fo = QP G e + R (10)
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3 Case study: Material and methods

In a case study, we tested the technical feasibility of our assessment method with
an industrial scale SBS unit using real-world LWP waste.

3.1 Test setup

The developed test setup consists of a state-of-the-art, industrial-scale NIR-based
SBS unit with a total working width of 2000 mm, an acceleration belt speed of 3 m/s,
and an air nozzle bar with 12.5 mm nozzle distance operated at 5.5 bar air pressure.
For the sorting trials, the effective working width was reduced to 1000 mm to enable
high occupation despite the limited transport capacity of the upstream conveyors.
The sorter was programmed to actively sort out PET, while all other materials were
supposed to end in the drop fraction. The sorting recipe came directly from the SBS
manufacturer, represented an industry-standard sorting recipe used in several LWP
sorting plants, and was not further modified or adapted for the sorting trials.

A first additional NIR sensor (NIR-1) recorded the acceleration belt. After the SBS
unit, the drop and eject fraction then fell on separate conveyor belts respectively
(width: b = 830 mm, belt speed: v = 1.2 m/s), where both material flows were
captured by a second NIR sensor (NIR-2). Afterward, the NIR-2 recordings were
digitally split into eject and drop recordings. To simulate a continuously working
sorting plant, eject and drop material flows were mixed and entered a material loop
before being fed again to the SBS unit. Inside the material loop, a modified ballistic
separator and several belt transfers ensured a material flow homogenization before
re-entering the SBS units.

The used NIR sensors were EVK HELIOS EQ32 sensors from EVK Kerschhaggl
GmbH (Raaba, Austria) working in the wavelength range of 930 nm — 1700 nm with
a spectral resolution of 3.1 nm at an acquisition frequency of 450 Hz. An analysis
recipe (Figure 3a) containing spectral references for the material classes PET,
PP, PE, PS, BC, and PPC was developed and loaded on both NIR sensors. The
NIR sensors classify each pixel based on the analysis recipe, and the resulting
false-color images (Figure 3b-d) were recorded using a self-developed recording
software for subsequent data analysis.
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Figure 3: (a) NIR recipe and resulting false-color images (red marked
areas are used for spectral classification) of (b) acceleration belt (NIR-
1), (c) eject, and (d) drop belt (NIR-2). Grey: unclassified material.

3.2 Material and experimental procedure

The investigated test material is LWP waste from Maribor (Slovenia). To simulate
a realistic 3D plastic fraction typical for SBS applications in LWP sorting, we
preconditioned the material flow before the trials with a ballistic separator to remove
2D materials and fines (< 45 mm) and an eddy current and magnetic separator to
remove ferrous and non-ferrous metals, respectively. To achieve material flow with
a certain percentage of eject material (in this case PET), pure PET and non-PET
fractions were generated firstly. For the PET fraction, post-consumer PET bottles
were used as the source material. To ensure proper classifiability of each bottle
and to exclude false discharges due to poor classifiability of certain bottles (e.g.,
full-sleeve bottles), the PET fraction was delabeled with the STADLER Delabeler
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(Kuppers et al., 2019) to generate a pure post-consumer PET fraction and exclude
the influences of labels and sleeves on the sorting result. A non-PET 3D plastic
fraction was generated by sorting out all PET contents from the preconditioned LWP
waste prior to the sorting trials. Subsequently, a PET content of 30 wt% was set
for the test material by mixing defined amounts of the PET and non-PET fraction.

Different material flow presentations were simulated by gradually increasing the
throughput in 16 throughput steps. The throughput increases were achieved by
adding a defined amount of additional test material to the material loop in each
step. After a buffer time of 5 minutes to equilibrate the material loop, the sorting
results were monitored for 10 minutes (equivalent to about 3.5 material cycles) for
each throughput step.

3.3 Data evaluation

The subsequent data analysis was implemented in Python 3.8. First, all images
were spatially calibrated to obtain results in metric units. Second, the material flow
composition and OD were determined and aggregated to a sampling rate of 15 Hz.
Third, each region was classified into singled and clustered regions, and centroid
distances were determined. After that, the SR was determined, and the centroid
distances were resampled by evaluating the image in chunks of 1/15 s length
in conveying direction. To reduce the artifacts of individual particles and obtain
information on the material flow level, all results were smoothed by a 1s moving
average.

The sorting performance indicators (Eq. (11)-(13)) were then calculated by
comparing the area flows per material class:

(11)

APET,e]’ect

C;ET,eject = T [pX%]
eject
APET eject
Rpgr = —————— [px%] 12
ApET,eject T APET drop (12)
N CPETeject * RPET
Fipgr =2- e [px%] (13)

P T
CPET,cject T RpET
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For a mass-based process evaluation, these area-based indicators have to be
transformed into mass-based indicators (Kroell et al., 2021), which we plan to
address in future work. Since the grammages of the investigated material groups
are in a similar order of magnitude, we neglect this effect for the first demonstration
of technical feasibility and report the preliminary results in pixel percent (px%),
cf. Eq. (11) — Eq. (13).

4 Case study: Preliminary results and discussion

4.1 Discrimination of singled and clustered regions

To determine if the classification into singled and clustered regions based on the
NIR-1 recordings (false-color images) is technically feasible, we manually classified
n = 1,000 randomly sampled regions. The resulting dataset contained n = 632
(63.2%) singled, n = 335 (33.5%) clustered regions, and n = 33 (3.3%) regions
that could not be classified unambiguously (which were excluded from the labeled
dataset).

For an initial classifier, we extracted the two features (i) impurity (share of all except
the most common material classes and unclassified material of a particle) and (ii)
projection area of each region and split the dataset into 75% training and 25% test
data. Figure 4 shows the distribution of impurities and projection areas between the
singled and clustered regions.

Based on the training data, we determined two thresholds (i) .

impurity

= 12 px%
(optimal threshold between singled and clustered regions, see Figure 4a) and
(i) 7., = 1,000 cm? (maximum projection area of singled clustered incl. 10% buffer
for different particle positions). Based on these thresholds, we constructed a simple
if/else classifier:

(14)

_ {"CIUSterEd"r lf Iregion 2 Timpurity or Aregion = Tarea
"singled", else

Where I and Awg,

region 101

. are the impurity and projection area of a region respectively,
and RTis the region type. Figure 4c shows that this simple classifier already achieves
a classification accuracy of 92.3% and can sufficiently discriminate singled from
clustered regions (Figure 4d).

46



Assessment of sensor-based sorting performance for lightweight packaging waste through sensor-based material

(@) (b)

6000 (c)

5000

singled

4000

True

3000

Impurity [-]

9.6% 90.4%
2000

clustered

1000 A singled  clustered
Predicted

singled clustered

s

Figure 4: Identification of clustered regions. (a) Distribution of material impurities per region type,
(b) distribution of projection areas per region type, (c) confusion matrix of region type classification
based on impurity and projection area thresholds (dashed line in [a] and [b]) and or-conjunction on
the test set, (d) exemplary false-color image with identified regions (blue: singled, red: clustered).

The classification accuracy can likely be improved by incorporating more features,
extending the training data set, and applying sophisticated machine learning (ML)
models. Especially convolutional neural networks (CNNs) could be promising for
this classification task.

4.2 Interrelation between material flow presentation indicators

Based on the discrimination of singled and clustered regions, the SR was calculated,
and Figure 5a shows the interrelation between OD, SR and relative throughput. As
one would expect, the OD increases with increasing relative throughput, while the
SR decreases. Two segments can be identified: For ODs between 0% and about
20%, the SR stays roughly constant. For ODs above about 20%, the SR decreases
with increasing belt occupation.

The centroid distances (Figure 5b) decrease with increasing OD, i.e., regions move
closer together. However, at ODs above about 30%, increased region distances
can be observed. This effect can be very likely be traced back to the formation of
more clustered regions (cf. Figure 5a) at higher ODs: As the clustered regions have
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larger projection areas than singled particles, the centroid distances increase with
lower SRs and higher ODs.
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Figure 5: Interrelation between (a) OD and SR for different relative throughputs and (b) OD
and centroid distances. CD;: centroid distance to i-th nearest neighbor. (1s moving average;
scatterplot for better visualization limited to a random selection of 1,000 data points each)

These findings show that the SR can be a useful metric to assess the material flow
presentation besides the OD. However, as all sorting trials were conducted on the
identical acceleration belt and with identical material flow guidance, the additional
advantage of SR over the OD can currently only be estimated to a limited extent.

Furthermore, the prelimary SBMM data indicates that the presentation of post-
consumer LWP as a singled monolayer to SBS units is indeed challenging: Even
at the lowest investigated throughputs (mean OD: 8.8%), only about half of the
covered area (mean SR: 52.4%) was classified as singled.

In contrast, the centroid-to-centroid distances seem to be of limited use for describing
the particle proximity at higher ODs due to the formation of clusters. Here, region
distances that describe the distances between individual region borders could be a
potential improvement.

4.3 Influence of material flow presentation on sorting performance
Figure 6 shows the interrelation between the material flow presentation (assessed
by the OD and SR) and different sorting performance metrics (purity, yield, -score).
As depicted in Figure 6a, the sorting performance decreases linearly with increasing
OD from about 91.6 px% purity and 98.7 px% vyield at 8.8% OD to about 74.2 px%
purity and 97.0 px% vyield at 42.6% OD.
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For the investigated SBS unit, a 12.2-fold steeper decrease of the purity with
increasing OD (slope: -0.49) compared to the yield (slope: -0.04) can be observed.
Accordingly, Figure 6b shows an increased sorting performance for higher SR.
Here, the purity increases 12.5 times steeper than the purity with increasing SR.
As graphically shown in Figure 6, the -score can be a useful performance metric to
combine purity and yield.

(@) (b)
100% e , 100% e
o 90% o 90%
B B
E 80% £ 80%/
8 8
f= c
g 70% g 70%
S S
2 60% — Yield S 60% — Yield
& o F1-score o o F1-score
50% : 50% :
—— Purity —— Purity
40%

o
10% 20% 30% 40% 50% 60% 40 ﬁ’o% 30% 40% 50% 60% 70%
Occupation density Singling ratio

Figure 6: Influence of (a) OD and (b) SR on sorting performance.
(5s moving average; scatterplot for better visualization limited to
a random selection of 1,000 data points each)

The significantly reduced sorting performance of SBS units due to suboptimal
material flow presentation (high OD) is consistent with related research (Curtis et
al., 2021; Kappers, Schlogl, et al., 2020; Kiippers, Seidler, et al., 2020). In contrast,
a quantitative comparison of our findings with the results of Kiippers, Seidler, et al.
(2020) highlights the significant influence of individual SBS units, machine settings,
and material flows on the obtained transfer function (quantitative relation between
material flow presentation or throughput and sorting result): While Kiippers, Seidler,
et al. (2020) report a decreased yield of on average -0.76% per 1% additional OD,
the yield of our investigated SBS unit decreased with only -0.04% per 1% additional
OD. A possible explanation for this is that in state-of-the-art SBS equipment, the
weighting of purity and yield can be adjusted in the sorter settings, and changing
these weightings would directly affect the slope of the purity and yield in the obtained
transfer function. Moreover, the sorting results are influenced by the characteristics
of the underlying sorting engine and the input material. It would thus be interesting
to compare the sorting performance as assessed through the -score for different
SBS settings or different SBS units in future work.
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4.4 Limitations

It is essential to note that the obtained purity and yield values cannot be directly
transferred to plant scale LWP sorting due to (i) the pixel-based performance
assessment (cf. Section 3.3) and (ii) the removal of articles with limited sortability
(cf. Section 3.2). The first limitation (pixel-based assessment) results in
underestimating the sorting performance, as, e.g., PE bottle caps on PET bottles
are counted as target material in traditional (particle-based) sorting assessment,
but as non-target material in our pixel-based assessment method. The second
limitation causes overestimating of the sorting performance, as articles with limited
sortability would cause additional sorting errors. Here, a direct comparison of
the SBMM- and pixel-based sorting assessment with traditional (particle-based)
performance assessment would be of great value.

5 Conclusion and outlook

In conclusion, our case study shows that an automatic assessment of (sensor-
based) sorting processes is technically feasible and offers significant advantages
over state-of-the-art assessment methods, e.g., in terms of reduced time and cost
expenditure, a higher statistical significance of the results, and greater flexibility
and detail of data evaluation. The introduced indicators singling ratio and particle
distances enable a more nuanced description of the material flow presentation and
demonstrate the difficulty of singling post-consumer LWP wastes on acceleration
belts.

Our results show that increased belt occupation significantly linearly reduces the
sorting performance of SBS equipment in terms of lower purity, yield, and overall
sorting performance (F,-score). These preliminary findings suggest that much of the
discrepancy between theoretically possible and practically achieved LWP sorting
performance can be explained by suboptimal material flow presentation.

In future work, we plan to extend the sorting trials to different material flow
compositions and further improve the developed assessment method. Furthermore,
the hypothesis that large parts of the discrepancy between theoretically possible
and practically achieved LWP sorting performance can be explained by suboptimal
material flow presentation shall be investigated in SBMM trials at plant scale. If this
hypothesis is validated, optimized material flow presentation offers considerable,
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but so far largely untapped, optimization potential in LWP sorting and could largely
contribute to a loss-minimized plastic recycling in general.
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