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4In the realm of material processing, both in primary resource extraction 

and secondary recycling, sensor-based technologies play a pivotal role in 
driving innovation and increasing resource efficiency. As the journey of 
advancement continues, the proceedings of the 10th International Confe-
rence ‚Sensor-Based Sorting & Control 2024‘ showcase the latest solutions 
and findings, explore new applications, and delve into the ongoing de-
velopments in this field.

Submissions on the following topics were published:

• Sensor-based characterization and sorting,

• Sensor-based material flow monitoring,

• Sensor-based process control,

• Data processing and the application of machine learning algorithms,

• Development of sensor technologies,

• Peripherals of sensor-based technologies.

The conference was organized by the Department of Anthropogenic Ma-
terial Cycles (ANTS) and the Unit of Mineral Processing (AMR) from RWTH 
Aachen University, taking place from the 13th to 14th March 2024.
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Preface

Preface

Dear participants of the SBSC 2024,

A crucial challenge for our generation and those to come is the mindful and 
sustainable utilization of finite resources within the planetary boundaries. In addition 
to other industries, this also appears to be especially important for the mining and 
recycling sectors. Over the past four decades, the advent of sensor technologies 
and the utilization of machine and deep learning methods has been a catalyst for 
significant advancements in both sectors, which will be discussed among the expert 
audience of the SBSC 2024. 

A key focus of our conference is the accelerating pace of digitalization and its impact 
on sensor technology applications. As shown by the contributions of SBSC 2024, we 
are witnessing an increased focus on the increased exploitation of existing and new 
data streams and the utilization of sensor technologies both for novel applications 
as well as the sensor-based sorting of new material flows. 

Another highlight of SBSC 2024 is the new panel discussion themed "Closing the 
Implementation Gap." In this panel, we will discuss with experts from different 
disciplines and with different perspectives how the transition of technical innovations 
into practical applications in the sensor-based sorting and control space can be 
accelerated to meet global challenges and enhance a sustainable development.

As we gather at SBSC 2024, we extend our gratitude to all participants, speakers, 
and contributors. Your presence and insights are what transform SBSC 2024 into 
a hub of knowledge and innovation. This conference is not just about sharing 
advancements; it is about fostering a community committed to the responsible and 
sustainable use of technology in our industries. Thank you for being a part of SBSC 
2024. Here's to another year of new advancements and inspiring exchanges in the 
world of sensor-based technologies!

Kathrin Greiff, Alexander Feil, Lars Weitkämper, Nils Kroell, Tabea Scherling, Devrim 
Gürsel, and Vincent Merz
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Abstract
Sensor-based material flow monitoring has great potential in sorting plants in 
general, an implementation based on the data of a sensor-based sorter (SBS) 
provides an economic advantage compared to the use of additional sensors. In 
this work, we provide insights into the data stream collected by a SBS positioned at 
the beginning of the sorting cascade for 3D-shaped particles in a sorting plant for 
lightweight packaging waste in Austria. The data was analyzed in three regards: A 
first analysis identifies plant downtimes within a year and allocates them to events 
such as weekends or public holidays. A second analysis presents the composition 
of the lightweight packaging material over a year. Here, the mean of the dominating 
fractions is 45.1% for PET, 16.1% for PE, and 15.4% for PP. Lastly, we examine 
the seasonal variability of the material composition. Here, no major changes in the 
composition in terms of mean and standard deviation were observed. Only the share 
of clear PET bottles increases in summer, whereas a lower share of blue PET bottles 
at the same time compensates the overall share of PET bottles. The results of this 
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research indicate the variety of possible applications for monitoring based on SBS 
data to improve the operational efficiency of the plant.

1 Introduction
Lightweight packaging waste is a heterogeneous mixture in many respects and 
differs, in material type, particle size, and particle mass. This heterogeneity stems 
primarily from their wide range of applications and packaged goods. Furthermore, the 
composition of waste depends also on socio-economic factors such as consumption 
habits, place of residence, education, but also from systemic influences caused by 
the collection system and charging scheme for the disposal of other post-consumer 
wastes (Dehoust & Christiani, 2012; Langner et al., 1998). The basis for recycling 
is material with a high degree of purity, which can be obtained by sorting the 
heterogeneous waste in sorting plants (Letcher, 2020). For efficient plant operation, 
extensive knowledge of the waste composition is important. Typically, such waste 
characterization is carried out by manual sorting (Langner et al., 1998). However, 
this is relatively time-consuming, requires a lot of personnel, and is hence often 
limited to the input and output of a plant. Alternatively, sensors can be used to 
automate the characterization (Kroell et al., 2023a; Kroell et al., 2024, Schlögl et 
al., 2022a; Schlögl et al., 2023). This enables gathering inline information from any 
desired position within a plant at comparatively low costs. For this purpose, either 
sensors that are already installed, as in sensor-based sorters (SBS), or additional 
sensors can be used. While the former do not have to be purchased and installed 
from scratch, the data they collect is only available in most systems in a form that 
is analyzed in the context of the respective sorting task. It is therefore the more 
economical solution but poses some challenges regarding implementation and 
interpretation. 

In this research paper, we present insights into a lightweight packaging waste 
sorting plant in Austria with focus on the material flow over a year and the material 
composition within the selected periods. This data is of interest to the public, non-
governmental organizations, and researchers, but is currently only collected by 
private actors in Austria and is not made publicly accessible. The latest publicly 
available study describing the composition of lightweight packaging waste by type 
of plastic in Austria is based on extrapolation and refers to the reference year 2013 
and was published by van Eygen et al. in 2018. In addition, the collection system 
for lightweight packaging waste in Austria will be harmonized on a federal level from 
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2025 with the expectation that a higher collection rate will be achieved. Additionally, 
a deposit system for disposable PET beverage bottles will be introduced in 2025. As 
a result, the most relevant target fraction of lightweight packaging sorting plants in 
terms of both economics and mass (Neubauer et al., 2021) will no longer exist. Both 
measures must be seen in the context of stricter legal targets for plastics recycling 
within the European Union and pose challenges for the operators of lightweight 
packaging waste sorting plants. The SBS data not only has the potential to be used 
for monitoring the plant and, if necessary, optimization or control, but also to provide 
reliable data for other stakeholders to make plastics recycling more transparent.

In this paper we identify plant downtimes within a year and allocate them to events 
such as weekends or public holidays, present the composition of the lightweight 
packaging material according to the sensor data over a year. Furthermore, we 
examine the seasonal variability of the material composition according to the sensor 
data through comparison of the mean composition for the months January, March, 
May, July, September, and November.

2 Materials and Methods
The analyzed data was automatically collected from a SBS equipped with sensors 
sensitive within the visible and near-infrared range of light. The sorter is part of an 
Austrian lightweight packaging waste sorting plant and positioned at the beginning 
of the sorting cascade of 3Dshaped particles. The target fraction of the aggregate 
are clear PETbottles. The data has a temporal resolution of one minute, totaling at 
283,734 measurements. Each measurement contains the pixel sums of the material 
classes PE, PP, PET bottle clear, PET bottle color, PET bottle blue, PET bottle 
green, PET blister, PVC, PS, liquid packaging board, cellulose, and other for every 
pixel that couldn’t be assigned to any of the material classes mentioned above.

Data handling and visualization was performed using Matlab, Version 9.13.0.2105380 
(R2022b) Update 2 and Microsoft Excel Version 2311. Depending on the respective 
query, the data was aggregated into different bins (hours, days, weeks, month) and 
then analyzed according to material composition. In this context, it needs to be noted 
that for some days only few measurements were available. This stems from the fact 
that data was only stored when the SBS was in operation. In case the conveyor belt 
occupancy was low, it is also possible that only a few pixels were recorded within 
a minute. For example, this could take place when other aggregates malfunction 
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or the plant was seizing or starting operation. Hence, the data aggregation from a 
time window of a minute to a time window of at least an hour enables the reduction 
of extremes that result from different incidents, such as input material with high 
shares of certain, unfavorable, products, overload of the SBS, sudden SBS or plant 
downtimes, material blockages etc.

3 Results and Discussion
The investigated data represents the material flow through the SBS over one year 
by material class. The data was examined regarding the material flow through the 
SBS by material class, the material composition over a year, and potential seasonal 
variations. 

3.1 Material Flow Through the SBS by Material Class
Fig. 1 shows the material flow through the SBS, subdivided by the respective 
material shares, and based on a daily mean. The material proportions are relatively 
constant, with a peak of PE in end of February and a peak of PP in mid-May 
and mid-September. The average PE concentration on that day in February was 
24%, which is 9 percentage points above the annual mean. The PP peak in May 
resulted from the fact that only a few measurements were stored on this day. These 
measurements contained low shares across all material classes except PP. The 
PP peak in September is analogous and stems from an average PP concentration 
exceeding the annual mean of 15% by 4 percentage points.

Plant downtimes can be identified as empty columns in Fig. 1. In addition, downtimes 
can be associated with events such as weekends or public holidays such as Easter, 
Christmas, or the Austrian national holiday, which is indicated by arrows at the 
top of the figure. Several conclusions can be drawn from this. Since the observed 
downtimes correspond to known events, the timestamps appear to be reliable 
enough for further analysis within shorter time periods such as months, weeks or 
even days. As SBS usually operate as black boxes with unknown classification 
algorithms and settings, this first analysis is a necessary validation of the data 
stream. 
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Fig. 1. Sensor-based material shares of the SBS over a year. Downtimes are indicated 
by arrows on top of the figure. The data was aggregated by day. The examined 

fractions are PE, PP, PET bottle clear, PET bottle color, PET bottle blue, PET bottle 
green, PET blister, PVC, PS, Liquid packaging board, Cellulose, and other.

The analysis of SBS data over longer periods allows for monitoring the operation 
of the plant and investigation of patterns that indicate possible anomalies or 
correlations. Examples of this could be the origin of the input material, the feeding 
of the plant, the plant throughput, or the setting of certain aggregates upstream of 
the SBS. Further, SBS data enables automated monitoring of the general operation 
of a plant in shorter periods of time. This results from the fact that possible material 
blockages can be observed, as no material passes the SBS even though the plant 
control system indicates a running plant. Ultimately, this could lead to an improved 
operational efficiency of the plant.

3.2 Material Composition Over a Year
In this section, we present the sensor-based material shares aggregated by week 
visualized in Fig. 2. As mentioned in Section 2, the aggregation by week reduces 
outliers. The dominant fractions PET, PE and PP show the highest variability, 
especially PET bottles clear and PET bottles blue. Smaller fractions such as PVC, 
PS, liquid packaging board and cellulose show less variability.
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Fig. 2. Sensor-based material shares over one year by detected material classes of the SBS. The data 
was aggregated by week. The examined fractions are PE, PP, PET bottle clear, PET bottle color, PET 

bottle blue, PET bottle green, PET blister, PVC, PS, Liquid packaging board, Cellulose, and other.

Additionally, the mean values for the respective fractions were calculated: 
PE 16.1 %, PP 15.4 %, PET bottle clear 17.7 %, PET bottle color 3.6 %, PET 
bottle blue 10.6 %, PET bottle green 3.8 %, PET blister 9.4 %, PVC 1.0 %, PS 
4.2 %, liquid packaging board 7.8 %, cellulose 2.7 %, other 2.1%.  
It is important to note that these values are based on the pixels recorded by the 
camera of the SBS. Manually sorting and weighing the same material would likely 
result in different material shares. One reason for that are different grammages as 
the camera cannot determine the specific mass of a particle. However, a conversion 
from pixel areas to mass is possible, as described by Kroell et al (2023b).

Nevertheless, special peculiarities inherent to sensor-based monitoring and control 
based on SBS data must be considered. These include systematic errors, such as 
the non-detection of soot-colored particles or overlapping particles, but also errors 
based on the undisclosed classification algorithm of the sorting machine (Küppers 
et al., 2020, Schlögl et al., 2022a). In this data set, for example, the analyzed data 
was also classified on an object-level. For example, plastic bottles made of PET with 
PE labels and PE lids are fully classified as PET. Since the SBS was used to sort 
clear PET bottles, it is also likely that those pixels of the material class PET clear are 
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weighed accordingly in the sorting engine. This hypothesis is proven by Schlögl et 
al. (2023), as they identified an overrepresentation of PET, PE, and PP data, when 
comparing the SBS data with an external NIR sensor.

Despite these inherent errors of SBS data, there is a high potential for the detection 
of anomalies during the operation of the plant. For example, strong deviations from 
the average composition could indicate problems with the input (e.g., incorrect 
declaration) or problems with upstream aggregates (e.g., a ballistic separator not 
well configured). For both cases the utilization of relative data is sufficient.

3.3  Seasonal Material Composition Over a Year
Sampling guidelines for waste characterization emphasize the temporal variability 
of different types of waste (e.g., Langner et al., 1998; CEN/TR 15310-1:2006; LAGA 
PN 98, 2001; Moser, 2004; Zwisele, 2004). Langner et al. (1998) imply, that this 
variability for lightweight packaging waste plays a minor role compared to residual 
waste or bio waste. However, there is hardly any publicly available data on the 
variability of lightweight packaging waste. Potential drivers for seasonal variability 
on the composition of lightweight packaging waste could be changed consumption 
patterns such as an increased consumption of certain goods (like ice cream in 
summer or gingerbread in winter) or changes in the waste generation (e.g., increased 
amounts due to holidays or tourism). Tab. 1. contains mean and standard deviation 
for the material fractions classified by the SBS for the months January, March, May, 
July, September, and November.

Tab. 1: Mean and standard deviation for the material share of the examined fractions PE, PP, PET 
bottle clear, PET bottle color, PET bottle blue, PET bottle green, PET blister, PVC, PS, Liquid packaging 

board, Cellulose, and other for the months January, March, May, July, September, and November.

Material Jan Mar May Jul Sep Nov

PE
Mean [%] 18.0 16.7 16.5 15.8 15.3 15.9
Std [%] 10.9 8.9 8.6 9.1 8.2 8.6

PP
Mean [%] 14.1 15.5 16.1 15.2 16.4 15.4
Std [%] 8.6 7.9 7.6 7.7 8.7 7.9

PET bottle 
clear

Mean [%] 15.1 14.7 18.7 19.4 19.3 14.3
Std [%] 8.2 7.1 8.1 8.9 8.4 7.8
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Material Jan Mar May Jul Sep Nov

PET bottle 
color

Mean [%] 4.6 3.8 3.6 3.3 2.8 5.3
Std [%] 3.7 2.5 2.3 2.4 2.3 4.1

PET bottle 
blue

Mean [%] 12.0 11.5 8.7 10.2 11.4 10.5
Std [%] 6.4 5.8 3.9 5.7 5.4 5.6

PET bottle 
green

Mean [%] 3.3 3.4 3.6 3.8 4.6 4.8
Std [%] 2.6 2.5 2.4 2.5 2.9 3.5

PET blister
Mean [%] 8.4 9.4 10.6 9.4 8.9 10.1
Std [%] 5.4 5.0 4.7 5.0 4.6 5.2

PVC
Mean [%] 1.0 1.3 1.0 0.8 0.9 1.0
Std [%] 2.8 3.7 2.4 2.0 2.4 3.7

PS
Mean [%] 4.1 4.3 4.7 4.0 4.3 4.3
Std [%] 6.3 4.9 4.7 4.3 4.3 5.0

Liquid 
packaging 
board

Mean [%] 8.3 8.0 7.7 7.2 7.6 8.1

Std [%] 5.0 4.1 4.1 4.0 4.2 4.4

Cellulose
Mean [%] 3.3 2.8 2.7 2.3 2.2 2.8
Std [%] 5.9 4.0 4.0 3.6 3.3 3.9

Other
Mean [%] 2.3 3.0 2.0 1.8 2.0 1.8
Std [%] 5.0 5.1 4.0 4.1 3.0 3.2

Despite the high temporal resolution at two-month intervals, at first glance there 
are no major changes in the composition in terms of mean and standard deviation. 
Smaller peculiarities are a higher proportion of PE in January (18 % compared to 
the usual 15.3 - 16.7 %), an increased proportion of clear PET bottles in May, July, 
and September (18.7 - 19.4 %) compared to the usual range of 14.3 - 15.1 %. 
Furthermore, there is an increase in colored PET bottles between September 
(2.8 %) and November (5.3 %). Moreover, a lower proportion of blue PET bottles in 
May (8.7 %) compared to the usual 10.2 - 12.0 %.

The increased proportion of PE in January could be due to a higher proportion of 
film, which is generated by the increased consumption during the Christmas period 
and may end up in the 3D-cascade due to possible overloading of the plant. This 
information could be relevant for plant operation, as an increased PE content may 
suggest reducing the throughput to ensure constant quality of the output fractions. A 
theory for the increased proportion of clear PET bottles during the summer months 
could be an increased liquid consumption due to the higher summer temperatures. 
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However, this trend cannot be observed in the other PET bottle fractions. For blue 
PET bottles even the opposite trend can be observed. To investigate possible 
reasons and correlations more in-depth analyses is required. The use of SBS 
data to investigate the variation in material flow composition over the course of 
a year could be of interest not only to individual plant operators, but also to other 
stakeholders in the waste management sector. In this way, a nationwide comparison 
of the material flow composition could be realized with minimal personnel costs. 
This could efficiently close the knowledge gap concerning variability in lightweight 
packaging waste.

4 Outlook
With this article, we were able to provide insight into the data stream collected by a 
single SBS in a sorting plant for lightweight packaging waste. However, the analyses 
presented are only based on a part of the data collected by such an aggregate. For 
example, it would be also possible to extract additional information like conveyor 
belt load or grain size distribution.

Furthermore, the data was only analyzed for longer, continuous periods (months 
or the entire year). When shorter periods are considered, it could be possible to 
improve the monitoring of the plant through the detection of possible anomalies or 
to find unknown correlations between the material input, plant operation and plant 
output.

Moreover, it is also possible to combine the data recorded by several SBS in one 
plant. With this, further information on interdependencies of plant aggregates could 
be investigated. Linking SBS data in this way could be used by plant operators for 
better, automated monitoring of plant operation and dynamic plant control.

Nevertheless, the aforementioned peculiarities inherent to sensor-based monitoring 
and control based on SBS data must not be ignored in the interpretation. In this 
context, the problem of converting pixels to masses due to the high heterogeneity 
of the waste, as well as alteration of the data by the algorithm optimized for sorting, 
should be mentioned. To analyze the extent of this problem in practice, SBS data 
in different systems from different manufacturers would have to be analyzed and 
compared. The authors also recommend evaluating whether it is possible to access 
the original sensor data before changes are made by weighting or object detection 



20

Sensor-Based Sorting & Control 2024

to use it for material flow monitoring. This would allow the sensor data to better 
represent the actual material flow composition.

The ongoing analysis is promising for SBS data to have a relevant role in material 
flow monitoring and process control in the sorting plants of the future. 
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Abstract
In current state of the art sensor-based sorting systems, the length of the deflection 
windows, i.e., the period of nozzle activation and the number of nozzles to be 
activated, is commonly determined solely by the size of the particles. However, this 
comes at the cost of the sorting process not accounting for model discrepancies 
between actual and presumed particle motion, as well as for situations where the 
available information does not allow for precise determination of nozzle activations. 
To achieve a desired sorting accuracy, in practice, one is therefore usually forced to 
enlarge the deflection window to a certain degree, which increases the number of 
falsely co-deflected particles and compressed air consumption.
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In this paper, we propose incorporating the uncertainty of the prediction of particle 
motion of each individual particle into the determination of the deflection windows. 
The method is based on the predictive tracking approach for optical sorting, which 
tracks the particles while they move toward the nozzle array based on images of 
an area-scan camera. Given the extracted motion information from the tracking, 
we propose an approximation for the distribution of arrival time and location of the 
particle at the nozzle array assuming nearly constant-velocity or nearly constant-
acceleration particle motion behavior. By evaluating the quantile function of both 
distributions, we obtain a confidence interval for the arrival time and location based 
on prediction uncertainty, which we then combine with the particle size to form 
the final deflection window. We apply our method to a real sorting task using a 
pilot-scale chute sorter. Our results obtained from extensive sorting trials show 
that sorting accuracies can be remarkably improved compared with state-of-the-art 
industrial sorters and enhanced even further compared with predictive tracking while 
having the potential to reduce compressed air consumption.

1 Introduction
The aim of data processing in sensor-based sorters with pneumatic separation is 
essentially to determine a deflection window, i.e., to decide when, how long, and 
which nozzles to activate to eject a particle of an undesired class. Usually, the 
period of nozzle activation and the number of nozzles to be activated are determined 
based on the size of the respective particle (Maier et al., 2021). Therefore, although 
the location of the deflection window depends on the individual particle motion, its 
size does not. Hence, current algorithms for sensor-based sorting are unable to 
account for model discrepancies between actual and presumed particle motion, 
as well as for situations where the available information does not allow for precise 
determination of nozzle activations. For example, for a particle moving unusually 
slowly, the predicted deflection window may be too short to cover the period in which 
the particle passes the nozzle array, while for a particle moving strictly according 
to the assumed motion, it may be larger than required. This inability leads to the 
risk of both, particles not being ejected and falsely co-deflected particles, as well as 
unnecessarily high consumption of compressed air.

In practice, one is therefore usually forced to enlarge the deflection window by a 
fixed, often experimentally determined, amount. This amount can be viewed as an 
average deviation (w.r.t. all particles) or uncertainty within the forecast of particle 
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motion. Explicitly including such a margin is thus often essential for achieving a 
desired sorting accuracy. However, enlarging the deflection window comes with 
the drawback that in turn the number of falsely co-deflected particles as well as the 
compressed air consumption is increased. Given that around 70 % of the operating 
costs of a pneumatic sorter are attributable to compressed air generation (Gülcan 
& Gülsoy, 2018), larger deflection windows constitute a major cost factor, and their 
reduction bears enormous potential for improvement.

To address this problem, we propose incorporating the uncertainty of the prediction 
of particle motion of each individual particle into the determination of the deflection 
windows. The basic idea is that when the uncertainty for a particular particle is low, 
i.e., it is indicated that the prediction is accurate, the deflection window for that 
particle can be decreased, while it should be enlarged when the uncertainty is high.

Our proposed method for particle-specific deflection windows builds upon the 
predictive tracking (Maier et al., 2021; Pfaff, 2019; Pfaff et al., 2015) approach for 
optical sorting. While the current state of the art in the industry primarily relies on 
line-scan-camera-based prediction, i.e., the particles are captured by a line-scan 
camera shortly before they arrive at the nozzle ar-ray, predictive tracking shows 
significant improvements compared with line-scan-camera-based sorters (Maier, 
2022; Maier et al., 2021, 2023). This is mainly because line-scan-based approaches 
assume a constant velocity, common to all particles, along the transport direction 
and zero velocity per-pendicular to the transport direction to estimate a particle’s 
arrival time and location at the nozzle array. It therefore often fails to capture the 
individual particle movement correctly. Predictive tracking on the other hand uses 
an area-scan camera along with a multitarget tracking (MTT) algorithm to track the 
particles’ center points while the particles are moving. In its original ver-sion, it then 
predicts the center points’ time and location of arrival at the nozzle array based 
on the extracted particle-individual motion information. Since no uncertainties are 
considered in this step, the size of the final de-flection windows is still not dependent 
on the individual particle’s motion, although their location is typically estimated more 
accurately than using a line-scan-based approach.

To incorporate uncertainties in the prediction process of predictive tracking, the key 
concept that we are pursuing is to derive the distributions of the particle arrival time 
and location at the nozzle array. These distributions explicitly encode the uncertainty 
inherent in the prediction, which otherwise is invisible but still present. Based on 
these distributions, we then find the deflection windows as the confidence intervals 
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for a desired confidence level , that is, we determine the deflection windows such 
that with probability , the particle arrives within the respective confidence interval 
(see Fig. 1).

From a mathematical perspective, the problem of finding the arrival time distribution 
of the particle center at the nozzle array can be viewed as a first-passage time 
problem. Here, the particle motion is described by a stochastic process, and 
we are interested in the distribution in the time domain that describes when the 
particle arrives at the nozzle array for the first time. Although first-passage time 
problems constitute an old and challenging class of mathematical problems, feasible 
approximations can be derived under some additional assumptions, as we recently 
proposed in (Reith-Braun, Thumm, et al., 2023). Fortunately, these assumptions 
are usually fulfilled by models describing particle motion in sorting tasks. For 
the distribution of the location of the particle’s center at the nozzle array, in this 
paper, we propose a linearization approach for approximation of the distribution of 
the stochastic process describing the particle motion orthogonal to the transport 
direction at the first-passage time. Since it is known that incorporating particle 
extents into the determination of the deflection window yields better results (Maier 
et al., 2021; Udoudo, 2010), we then show how the above methods can be used to 
estimate the arrival time distributions of the particle front and back, as well as of the 
location of the upper and lower particle edge location during the particle’s passage 
of the nozzle array. Finally, we show how to obtain deflection windows from these 
distributions using some approximations for the corresponding confidence intervals.
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Fig. 1. Outline of our proposed method for the optical sorting problem. Particles are transported to 
a nozzle array (here illustrated by a conveyor belt) while being observed by an area-scan camera. 
We assume (nearly) constant-velocity motion behavior and track the particles with a Kalman filter. 

Using an estimated particle state (here the last state in the camera’s field of view), we aim to 
estimate the distribution of the arrival time  of the particle at the nozzle array (lower distribution, a 
distribution in the time  domain) and the distribution of the particle’s location  (upper distribution, a 

distribution along the -coordinate) when passing the array of nozzles. Based on these distributions, 
we then calculate confidence intervals (depicted by dashed lines) used as deflection windows.

Our contributions are: First, we propose a general methodology to obtain particle-
specific deflection windows based on the assumption of constant-velocity (CV) or 
constant-acceleration (CA) particle motion behavior. Second, we show how the 
distribution of the location of the particle center along the nozzle array can be 
approximated. Third, we propose a method to incorporate particle extents into the 
determination of particle-specific deflection windows and finally, we demonstrate 
how the parameters of the method can be determined. We evaluate our methods 
using numerical simulations and by applying them to a pilot-scale chute sorter in 
extensive sorting trials.
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2 Background and Related Work
2.1 Motion Models for Describing Particle Motion
Here, we briefly describe the stochastic processes for describing particle motion 
that we consider in this study.

2.1.1 Constant-Velocity Model
The continuous-time (nearly) constant-velocity model, also known as the white-
noise acceleration model (Bar-Shalom et al., 2001), is the Gaussian process with 
state x(t) = [x(t) ẋ(t)]T, where x(t) denotes the position (evolving with time t) and 
ẋ(t) the velocity component, mean function

determined. We evaluate our methods using numerical simulations and by 
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2.1.1 Constant-Velocity Model 

The continuous-time (nearly) constant-velocity model, also known as the 

white-noise acceleration model (Bar-Shalom et al., 2001), is the Gaussian 

process with state 𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) = [𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) �̇�𝒙𝒙𝒙(𝑡𝑡𝑡𝑡)]⊤ , where 𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡)  denotes the position 

(evolving with time 𝑡𝑡𝑡𝑡) and �̇�𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) the velocity component, mean function 

𝑥𝑥𝑥𝑥�(𝑡𝑡𝑡𝑡) = [𝑥𝑥𝑥𝑥�𝑡𝑡𝑡𝑡0 + �̇�𝑥𝑥𝑥�𝑡𝑡𝑡𝑡0(𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡0) �̇�𝑥𝑥𝑥�𝑡𝑡𝑡𝑡0] , 

and covariance function Cov{𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡)} equal to 

𝑆𝑆𝑆𝑆 𝑆
(𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡0)3

3
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Here, 𝑡𝑡𝑡𝑡0 denotes the initial time, [𝑥𝑥𝑥𝑥�𝑡𝑡𝑡𝑡0 �̇�𝑥𝑥𝑥�𝑡𝑡𝑡𝑡0]⊤ is the mean of the state at 𝑡𝑡𝑡𝑡0, and 

Σ𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑡𝑡𝑡𝑡0 , Σ𝑥𝑥𝑥𝑥�̇�𝑥𝑥𝑥

𝑡𝑡𝑡𝑡0 , and Σ�̇�𝑥𝑥𝑥�̇�𝑥𝑥𝑥
𝑡𝑡𝑡𝑡0  are the respective entries of the state covariance matrix at 

𝑡𝑡𝑡𝑡0. The power spectral density 𝑆𝑆𝑆𝑆 determines the amount of additional noise 

introduced between time 𝑡𝑡𝑡𝑡0 and 𝑡𝑡𝑡𝑡. The CV model is linear and Markov w.r.t. 

the state variables. In the sense of Newtonian dynamics, the CV model has 

the interpretation of a freely moving particle influenced only by zero-mean 

white-noise random forces, with the amount of randomness controlled by 𝑆𝑆𝑆𝑆. 

2.1.2 White-Noise Plus Constant Acceleration Model 

The continuous-time white-noise plus constant acceleration (WN-CA) model 

is an extension of the CV model in which the mean function is given by 

Here, t0 denotes the initial time, [x̂ t0 ẋ̂ t0]T is the mean of the state at t0, and Σ t0
xx, Σ t0

xẋ 
and Σ t0

ẋẋ are the respective entries of the state covariance matrix at t0. The power 
spectral density S determines the amount of additional noise introduced between 
time t0 and t. The CV model is linear and Markov w.r.t. the state variables. In the 
sense of Newtonian dynamics, the CV model has the interpretation of a freely 
moving particle influenced only by zero-mean white-noise random forces, with the 
amount of randomness controlled by S.

2.1.2 White-Noise Plus Constant Acceleration Model
The continuous-time white-noise plus constant acceleration (WN-CA) model is an 
extension of the CV model in which the mean function is given by

𝑥𝑥𝑥𝑥�(𝑡𝑡𝑡𝑡) = �𝑥𝑥𝑥𝑥�𝑡𝑡𝑡𝑡0 + �̇�𝑥𝑥𝑥�𝑡𝑡𝑡𝑡0(𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡0) + 1
2

𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐(𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡0)2 �̇�𝑥𝑥𝑥�𝑡𝑡𝑡𝑡0 + 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐(𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡0)� , 

and the state and covariance function remain the same as for the CV model. 

Here, 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 has the interpretation of a known, constant acceleration acting on 

the particle in addition to zero-mean white-noise random forces. For instance, 

𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 can model the influence of gravity 𝑔𝑔𝑔𝑔 in free fall (𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 = 𝑔𝑔𝑔𝑔) or on an inclined 

plane (𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 = 𝑔𝑔𝑔𝑔 sin 𝛼𝛼𝛼𝛼, with 𝛼𝛼𝛼𝛼 being the slope angle). 

The discrete-time counterparts of both motion models can be obtained from 

the continuous-time models by fixing Δ𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡0 to the time difference Δ𝑡𝑡𝑡𝑡 be-

tween two consecutive time steps and treating 𝒙𝒙𝒙𝒙(Δ𝑡𝑡𝑡𝑡) as initial state for time 

step 𝑘𝑘𝑘𝑘 =  1 and so on, i.e., 𝒙𝒙𝒙𝒙𝑘𝑘𝑘𝑘+1 = 𝒙𝒙𝒙𝒙(Δ𝑡𝑡𝑡𝑡) | 𝒙𝒙𝒙𝒙𝑡𝑡𝑡𝑡0 ≜ 𝒙𝒙𝒙𝒙𝑘𝑘𝑘𝑘 , 𝑘𝑘𝑘𝑘 ∈ ℕ0, with 𝒙𝒙𝒙𝒙0 = 𝒙𝒙𝒙𝒙𝑡𝑡𝑡𝑡0. 

2.2 Algorithms for Optical Sorting 
While the current industrial state of the art is line-scan-camera-based predic-

tion, in our previous works (Pfaff, 2019; Pfaff et al., 2015), we showed that 

sorting accuracy can be improved with the help of the predictive tracking par-

adigm. In predictive tracking, an MTT algorithm is employed on the center 

coordinates of the particles while they are moving. For this, an area-scan 

camera observes typically the last 15 to 30 cm in front of the nozzle array. In 

a second step, the extracted motion information is then used to precisely ac-

tivate the nozzles (referred to as the prediction phase). For estimating the 

particle states during the MTT, multiple Kalman filters, one for each particle, 

using CV or CA motion models are deployed. For this, independent motion 

models in the transport direction, in the following referred to as the 𝑥𝑥𝑥𝑥-direc-

tion, and orthogonal to the transport direction, referred to as the 𝑦𝑦𝑦𝑦-direction, 

are used. At the end of the MTT, we are thus provided with precise estima-

tions of the individuals particles’ positions, velocities, and possibly accelera-

tions (if a CA model is used) in the form of their expectations and covariances. 

The prediction of the estimated particles’ time of arrival and location at the 

nozzle array is then again accomplished with motion models inspired by phys-

and the state and covariance function remain the same as for the CV model. Here, 
ac has the interpretation of a known, constant acceleration acting on the particle in 
addition to zero-mean white-noise random forces. For instance, ac can model the 
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influence of gravity g in free fall (ac =g) or on an inclined plane (ac =g sin α, with α 
being the slope angle).

The discrete-time counterparts of both motion models can be obtained from the 
continuous-time models by fixing ∆t=t-t0 to the time difference  between two 
consecutive time steps and treating x(Δt) as initial state for time step  k = 1 and so 
on, i.e. xk=1= x(Δt) | xt0 =Δ  xk, k ϵ ℕ0, with x0=xt0.

2.2 Algorithms for Optical Sorting
While the current industrial state of the art is line-scan-camera-based prediction, 
in our previous works (Pfaff, 2019; Pfaff et al., 2015), we showed that sorting 
accuracy can be improved with the help of the predictive tracking paradigm. In 
predictive tracking, an MTT algorithm is employed on the center coordinates of the 
particles while they are moving. For this, an area-scan camera observes typically 
the last 15 to 30 cm in front of the nozzle array. In a second step, the extracted 
motion information is then used to precisely activate the nozzles (referred to as the 
prediction phase). For estimating the particle states during the MTT, multiple Kalman 
filters, one for each particle, using CV or CA motion models are deployed. For this, 
independent motion models in the transport direction, in the following referred to as 
the -direction, and orthogonal to the transport direction, referred to as the -direction, 
are used. At the end of the MTT, we are thus provided with precise estimations of the 
individuals particles’ positions, velocities, and possibly accelerations (if a CA model 
is used) in the form of their expectations and covariances.

The prediction of the estimated particles’ time of arrival and location at the nozzle 
array is then again accomplished with motion models inspired by physics, such 
as CV or CA models. To this end, the motion models use the expectation of the 
estimated particle states from the Kalman filters at the last time step before the 
beginning of the prediction phase. An important difference is that while in MTT, time-
discrete versions of the CV or CA models are used, in the prediction of particles’ 
time of arrival and location at the nozzle array, predictive tracking uses their time-
continuous counterparts. In addition, all uncertainties are ignored, i.e., only the 
mean function of the time-continuous CV or CA model is used. Here, using time-
continuous models allows for being independent of the camera frequency and thus 
being able to provide more precise nozzle activations.
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Extensions to predictive tracking include incorporating orientation estimation in the 
MTT (Pfaff, 2019), and the use of more accurate, physically-inspired (Pfaff, 2019; 
Pfaff et al., 2020) and data-driven models. Latter includes the use of recurrent 
neural networks and multilayer perceptrons that replace the Kalman filters and 
the motion models as well as combinations of physically-inspired and data-driven 
models (Pollithy et al., 2020; Thumm et al., 2022). An experimental evaluation of 
some of these ideas using a lab-scale optical sorter can be found in (Maier et al., 
2023). An image-based rather than a midpoint-based approach was persuaded by 
(Reith-Braun, Bauer, et al., 2023). Here, the sorting problem was framed as a video-
forecasting task and solved using a convolutional long short-term memory network. 
As the approach can be trained in an unsupervised fashion, it allows sorting with a 
minimum of operator setup and supervision.

All algorithms eventually need to transform the information about the estimated 
particle arrival time and location at the nozzle array into a deflection window. 
This is either accomplished by targeting the particle center or, more commonly, 
by incorporating information about the particle extent, usually in the form of a 
bounding box (Maier, 2022; Maier et al., 2021; Udoudo, 2010). If the bounding box 
is extracted from a line-scan camera image, i.e., is in the temporal-spatial domain, 
it can be directly used as a deflection pattern after only minor post-processing. If the 
bounding box is extracted from an area-scan camera image, such as in predictive 
tracking, the length along the transport direction must be additionally converted to 
a time span by dividing by an estimated, potentially particle-dependent velocity. It 
is also common to use a modified version of the bounding box, e.g., by adding an 
offset or by multiplication with a factor. For example, an offset in -direction may 
account for the spatial resolution of the nozzle array (Maier et al., 2021). In general, 
larger deflection windows considerably improve the reliable deflection of unwanted 
particles. However, they also increase compressed air consumption and the number 
of falsely co-deflected particles. The parameters therefore need to be tuned carefully, 
e.g., be preliminary experiments, and a proper choice may additionally depend on 
the particle type (Maier, 2022; Maier et al., 2021). A scheme for determining proper 
parameters based on recorded particle tracks and their deviations was proposed 
in (Maier, 2022).
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2.3 First-Passage Time Problems
The first-passage time is defined as the event Ta=inf{t > t0 : x(t)=a}, i.e., the first 
time t > t0, a particle moving according to a stochastic process x(t) reaches a fixed 
boundary a ϵ ℝ. In general, solving this problem, known as a first-passage time 
problem, is a challenging task, with solutions only known for very few process–
boundary pairs (Blake & Lindsey, 1973; Nobile et al., 1985). An important general 
observation is that the event Ta<    t is equivalent to the event that the maximum of 
the process within the time range [t0, t), mt=supt0 ≤ s < t x(s) is greater than or equal to 
a, i.e., Ta<    t ⟺ mt ≥ a. Furthermore, it holds that

transport direction must be additionally converted to a time span by dividing 

by an estimated, potentially particle-dependent velocity. It is also common to 

use a modified version of the bounding box, e.g., by adding an offset or by 

multiplication with a factor. For example, an offset in 𝑦𝑦𝑦𝑦-direction may account 

for the spatial resolution of the nozzle array (Maier et al., 2021). In general, 

larger deflection windows considerably improve the reliable deflection of un-

wanted particles. However, they also increase compressed air consumption 

and the number of falsely co-deflected particles. The parameters therefore 

need to be tuned carefully, e.g., be preliminary experiments, and a proper 

choice may additionally depend on the particle type (Maier, 2022; Maier et 

al., 2021). A scheme for determining proper parameters based on recorded 

particle tracks and their deviations was proposed in (Maier, 2022). 

2.3 First-Passage Time Problems 
The first-passage time is defined as the event 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎 = inf{𝑡𝑡𝑡𝑡 > 𝑡𝑡𝑡𝑡0: 𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) = 𝑎𝑎𝑎𝑎}, i.e., 

the first time 𝑡𝑡𝑡𝑡 > 𝑡𝑡𝑡𝑡0, a particle moving according to a stochastic process 𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) 

reaches a fixed boundary 𝑎𝑎𝑎𝑎 ∈ ℝ . In general, solving this problem, known as 

a first-passage time problem, is a challenging task, with solutions only known 

for very few process–boundary pairs (Blake & Lindsey, 1973; Nobile et al., 

1985). An important general observation is that the event 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎 < 𝑡𝑡𝑡𝑡 is equivalent 

to the event that the maximum of the process within the time range [𝑡𝑡𝑡𝑡0, 𝑡𝑡𝑡𝑡), 

𝒎𝒎𝒎𝒎𝑡𝑡𝑡𝑡 = sup𝑡𝑡𝑡𝑡0≤𝑠𝑠𝑠𝑠<𝑡𝑡𝑡𝑡 𝒙𝒙𝒙𝒙(𝒔𝒔𝒔𝒔) is greater than or equal to 𝑎𝑎𝑎𝑎 , i.e., 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎 < 𝑡𝑡𝑡𝑡 ⟺  𝒎𝒎𝒎𝒎𝑡𝑡𝑡𝑡  ≥ 𝑎𝑎𝑎𝑎 . 

Furthermore, it holds that 

 ℙ(𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎 < 𝑡𝑡𝑡𝑡) = ℙ(𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) > 𝑎𝑎𝑎𝑎) + ℙ(𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎 < 𝑡𝑡𝑡𝑡, 𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) ≤ 𝑎𝑎𝑎𝑎) , (1) 

that is, to have a first-passage time smaller than 𝑡𝑡𝑡𝑡, a particle must be either 

located above 𝑎𝑎𝑎𝑎 at time 𝑡𝑡𝑡𝑡 or, if not, must have crossed the boundary at some 

time 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎  <  𝑡𝑡𝑡𝑡. However, ℙ(𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎 < 𝑡𝑡𝑡𝑡, 𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) ≤ 𝑎𝑎𝑎𝑎) in general is intractable. 

In (Reith-Braun, Thumm, et al., 2023), we proposed two methods to approxi-

mate the distribution of 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎, the first-passage time distribution (FPTD), under 

some additional assumptions on the process-boundary pair, such as that 

that is, to have a first-passage time smaller than t, a particle must be either located 
above a at time t or, if not, must have crossed the boundary at some time Ta < t. 
However, ℙ(Ta < t, x(t) ≤ a) in general is intractable.

In (Reith-Braun, Thumm, et al., 2023), we proposed two methods to approximate the 
distribution of Ta, the first-passage time distribution (FPTD), under some additional 
assumptions on the process-boundary pair, such as that there is a dominant drift 
that causes a first-passage almost surely. These assumptions are usually fulfilled by 
motion models that, e.g., describe technical transport processes. The best proven 
method, referred to as no-return approximation, uses the relation (1) and additionally 
assumes that once a particle has crossed the boundary, it cannot return to a position 
smaller than a (hence, the name) – a condition that is usually satisfied in technical 
transport processes. Consequently, ℙ(Ta < t, x(t) ≤ a) = 0 and ℙ(Ta < t)=ℙ(x(t) > a) 
(for a mathematical more rigorous treatment of the above assumption and the 
domain in which the approximation is valid, we refer to (Reith-Braun, Thumm, et al., 
2023)). Note that x(t) represents the first component of the state vector x(), and 
we are thus interested w.l.o.g. in the first-passage of the first state component w.r.t. 
a. An approximation of the FPTD can then be derived by differentiating the above 
relation w.r.t. t. Moreover, it is possible to find an expression for the quantile function 
analytically and to compute the moments numerically. The no-return approximation 
shows good alignment with Monte Carlo simulation for small and medium noise 
levels, i.e., high and medium signal-to-noise ratios.
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3 Methodology
We now present how the required distributions for obtaining deflection windows 
can be approximated. The first part of the section focuses on the distribution of 
the particle’s location at the nozzle array, whereas the second part shows how the 
particle extent can be included in the determination of the deflection windows.

3.1 The Distribution of the Particle Location at the Nozzle Array at 
the First Passage

For the distribution of the particle’s center location along the nozzle array, we require 
the distribution of the process orthogonal to the transport direction at the time of 
the first passage. Therefore, we define the random variable ya= {y(t) : t = Ta}, i.e., 
the -location at the first passage. Note that in addition to the uncertainties inherent 
to the process y(t), an additional source of uncertainty is that time itself is random, 
with distribution given by the FPTD.

We propose a linearization approach to approximate the distribution of ya that is 
valid for linear Gaussian state space models, such as the CV or CA model and 
their variants, referred to as Gauß-Taylor approximation (a similar method for 
approximation of the FPTD was proposed in (Reith-Braun, Thumm, et al., 2023)). 
For this, we first set up the motion equation y(Ta) in y-direction at Ta, using y(T̂a) 
with T̂a = E{Ta} as initial state and neglecting additional noise (here, E{⸳} denotes 
the expectation operator). Subsequently, we linearize the motion equation using 
a first-order Taylor series expansion at T̂a and E{y(T̂a)}, and, from the linearization, 
calculate the approximate mean and variance for the distribution of y(t) at the first 
passage. This results in E{ya}   E{y(T̂a)} and variance
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to the uncertainties inherent to the process 𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡), an additional source of un-

certainty is that time itself is random, with distribution given by the FPTD. 

We propose a linearization approach to approximate the distribution of 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎 

that is valid for linear Gaussian state space models, such as the CV or CA 

model and their variants, referred to as Gauß-Taylor approximation (a similar 

method for approximation of the FPTD was proposed in (Reith-Braun, 

Thumm, et al., 2023)). For this, we first set up the motion equation 𝒚𝒚𝒚𝒚(𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎) in 

𝑦𝑦𝑦𝑦-direction at 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎, using 𝒚𝒚𝒚𝒚�𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎� with 𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎 =  E{𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎} as initial state and neglecting 

additional noise (here, E{∙} denotes the expectation operator). Subsequently, 

we linearize the motion equation using a first-order Taylor series expansion 

at 𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎  and E �𝒚𝒚𝒚𝒚�𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎��, and, from the linearization, calculate the approximate 

mean and variance for the distribution of 𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡) at the first passage. This results 

in E{𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎} ≈ E�𝒚𝒚𝒚𝒚�𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎�� and variance 
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∂

∂𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎
𝒚𝒚𝒚𝒚(𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎)� 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎=𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎

𝒚𝒚𝒚𝒚(𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎)=E�𝒚𝒚𝒚𝒚(𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎)�

�

2

Var{𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎}  

         + �∇𝒚𝒚𝒚𝒚(𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎)𝒚𝒚𝒚𝒚(𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎)� 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎=𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎
𝒚𝒚𝒚𝒚(𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎)=E�𝒚𝒚𝒚𝒚(𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎)�

�

⊤

Cov �𝒚𝒚𝒚𝒚(𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎)� �∇𝒚𝒚𝒚𝒚(𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎)𝒚𝒚𝒚𝒚(𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎)� 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎=𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎
𝒚𝒚𝒚𝒚(𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎)=E�𝒚𝒚𝒚𝒚(𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎)�

� . 

For instance, for the CV and the CA model, we have Var{𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎} ≈ Var�𝒚𝒚𝒚𝒚�𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎�� +

E��̇�𝒚𝒚𝒚(𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎)�2 Var{𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎}. We then assume a Gaussian density for the distribution of 

the arrival location 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎. 

3.2 Deflection Windows Including Particle Extents  
So far, we considered the particles as point masses, i.e., they were fully de-

scribed by their center points. However, for a more realistic model, we need 

to take the particles’ extents into account. We now propose a method for in-

cluding particle extents in the determination of the deflection windows. 

For instance, for the CV and the CA model, we have Var{ya} ≈ Var{y(T̂a)} + 
E{ẏ(T̂a)}2 Var{Ta}. We then assume a Gaussian density for the distribution of the 
arrival location ya.

3.2 Deflection Windows Including Particle Extents 
So far, we considered the particles as point masses, i.e., they were fully described 
by their center points. However, for a more realistic model, we need to take the 
particles’ extents into account. We now propose a method for including particle 
extents in the determination of the deflection windows.

3.2.1 Temporal Deflection Windows
We propose to determine the temporal deflection windows based on the marginal 
distributions of the particle front arrival time T(a-l/2) and the particle back arrival time 
T(a+l/2), where l denotes the length of the particle in transport direction. Here, we 
assume that l does not change much (e.g., due to rotations) while passing the 
nozzle array. Particle extents may be then included by solving

3.2.1 Temporal Deflection Windows 

We propose to determine the temporal deflection windows based on the mar-

ginal distributions of the particle front arrival time 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 and the particle back 

arrival time 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2 , where 𝑙𝑙𝑙𝑙 denotes the length of the particle in transport di-

rection. Here, we assume that 𝑙𝑙𝑙𝑙 does not change much (e.g., due to rotations) 

while passing the nozzle array. Particle extents may be then included by solv-

ing 

ℙ �𝑻𝑻𝑻𝑻
𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙

2
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1 + 𝑞𝑞𝑞𝑞
2

 

for 𝑡𝑡𝑡𝑡start and 𝑡𝑡𝑡𝑡end, respectively, where 𝑡𝑡𝑡𝑡start and 𝑡𝑡𝑡𝑡end describe the lower and up-

per bound of the time interval within which the nozzles should be open. As 

before, 𝑞𝑞𝑞𝑞 ∈ (0, 1) denotes a desired confidence level with which one may 

wish to eject the particles. Solving the above equation essentially requires the 

quantile, or percent-point function (PPF), of the FPTD of 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 and 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2, 

which is available for the no-return approximation. 

3.2.2 Spatial Deflection Windows 

For the derivation of the spatial deflection windows, i.e., the dimension of the 

window along the nozzle array, we introduce two new random variables, 

namely the upper and the lower particle edge location during the particle’s 

passage of the nozzle array. These are defined by 

𝒚𝒚𝒚𝒚min = min �𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡) −
𝑏𝑏𝑏𝑏
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2

�  ,
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Here, 𝑏𝑏𝑏𝑏 is the particle width orthogonal to the transport direction (we again 

assume that 𝑏𝑏𝑏𝑏, 𝑙𝑙𝑙𝑙 do not change much). We then may again determine the 

deflection windows by solving 

ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦low) =
1 − 𝑞𝑞𝑞𝑞

2
 , ℙ�𝒚𝒚𝒚𝒚max < 𝑦𝑦𝑦𝑦up� =

1 + 𝑞𝑞𝑞𝑞
2

 

for tstart and tend, respectively, where tstart and tend describe the lower and upper bound 
of the time interval within which the nozzles should be open. As before, qϵ(0,1) 
denotes a desired confidence level with which one may wish to eject the particles. 
Solving the above equation essentially requires the quantile, or percent-point 
function (PPF), of the FPTD of T(a-l/2) and T(a+l/2), which is available for the no-return 
approximation.
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3.2.2 Spatial Deflection Windows
For the derivation of the spatial deflection windows, i.e., the dimension of the window 
along the nozzle array, we introduce two new random variables, namely the upper 
and the lower particle edge location during the particle’s passage of the nozzle array. 
These are defined by

3.2.1 Temporal Deflection Windows 

We propose to determine the temporal deflection windows based on the mar-

ginal distributions of the particle front arrival time 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 and the particle back 

arrival time 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2 , where 𝑙𝑙𝑙𝑙 denotes the length of the particle in transport di-

rection. Here, we assume that 𝑙𝑙𝑙𝑙 does not change much (e.g., due to rotations) 

while passing the nozzle array. Particle extents may be then included by solv-

ing 
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for 𝑡𝑡𝑡𝑡start and 𝑡𝑡𝑡𝑡end, respectively, where 𝑡𝑡𝑡𝑡start and 𝑡𝑡𝑡𝑡end describe the lower and up-

per bound of the time interval within which the nozzles should be open. As 

before, 𝑞𝑞𝑞𝑞 ∈ (0, 1) denotes a desired confidence level with which one may 

wish to eject the particles. Solving the above equation essentially requires the 

quantile, or percent-point function (PPF), of the FPTD of 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 and 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2, 

which is available for the no-return approximation. 

3.2.2 Spatial Deflection Windows 

For the derivation of the spatial deflection windows, i.e., the dimension of the 

window along the nozzle array, we introduce two new random variables, 

namely the upper and the lower particle edge location during the particle’s 

passage of the nozzle array. These are defined by 

𝒚𝒚𝒚𝒚min = min �𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡) −
𝑏𝑏𝑏𝑏
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Here, 𝑏𝑏𝑏𝑏 is the particle width orthogonal to the transport direction (we again 

assume that 𝑏𝑏𝑏𝑏, 𝑙𝑙𝑙𝑙 do not change much). We then may again determine the 

deflection windows by solving 

ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦low) =
1 − 𝑞𝑞𝑞𝑞

2
 , ℙ�𝒚𝒚𝒚𝒚max < 𝑦𝑦𝑦𝑦up� =

1 + 𝑞𝑞𝑞𝑞
2

 

Here, b is the particle width orthogonal to the transport direction (we again assume 
that b, l do not change much). We then may again determine the deflection windows 
by solving

3.2.1 Temporal Deflection Windows 

We propose to determine the temporal deflection windows based on the mar-

ginal distributions of the particle front arrival time 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 and the particle back 

arrival time 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2 , where 𝑙𝑙𝑙𝑙 denotes the length of the particle in transport di-

rection. Here, we assume that 𝑙𝑙𝑙𝑙 does not change much (e.g., due to rotations) 

while passing the nozzle array. Particle extents may be then included by solv-
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for 𝑡𝑡𝑡𝑡start and 𝑡𝑡𝑡𝑡end, respectively, where 𝑡𝑡𝑡𝑡start and 𝑡𝑡𝑡𝑡end describe the lower and up-

per bound of the time interval within which the nozzles should be open. As 

before, 𝑞𝑞𝑞𝑞 ∈ (0, 1) denotes a desired confidence level with which one may 

wish to eject the particles. Solving the above equation essentially requires the 

quantile, or percent-point function (PPF), of the FPTD of 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 and 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2, 

which is available for the no-return approximation. 

3.2.2 Spatial Deflection Windows 

For the derivation of the spatial deflection windows, i.e., the dimension of the 

window along the nozzle array, we introduce two new random variables, 

namely the upper and the lower particle edge location during the particle’s 

passage of the nozzle array. These are defined by 

𝒚𝒚𝒚𝒚min = min �𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡) −
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Here, 𝑏𝑏𝑏𝑏 is the particle width orthogonal to the transport direction (we again 

assume that 𝑏𝑏𝑏𝑏, 𝑙𝑙𝑙𝑙 do not change much). We then may again determine the 

deflection windows by solving 

ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦low) =
1 − 𝑞𝑞𝑞𝑞

2
 , ℙ�𝒚𝒚𝒚𝒚max < 𝑦𝑦𝑦𝑦up� =

1 + 𝑞𝑞𝑞𝑞
2

 

for ylow and yup that describe the lower and upper bounds of the spatial deflection 
window. This means we require the PPFs of ymin and ymax.

However, note that deriving the distributions of ymin and ymax itself requires solving 
an additional first-passage time problem, due to the equivalence of maximum and 
first-passage time problems. For this reason, to render the problem feasible, we 
introduce the additional assumption that the process y(t) is either monotonously 
increasing or monotonously decreasing in t ϵ (T(a-l/2), T(a+l/2)). Incorporating this 
assumption yields

for 𝑦𝑦𝑦𝑦low and 𝑦𝑦𝑦𝑦up that describe the lower and upper bounds of the spatial de-

flection window. This means we require the PPFs of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max. 

However, note that deriving the distributions of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max itself requires 

solving an additional first-passage time problem, due to the equivalence of 

maximum and first-passage time problems. For this reason, to render the 

problem feasible, we introduce the additional assumption that the process 

𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡) is either monotonously increasing or monotonously decreasing in 𝑡𝑡𝑡𝑡 ∈

�𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2,  𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2�. Incorporating this assumption yields 

𝒚𝒚𝒚𝒚min = min �𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙
2 , 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙

2 �  − 𝑏𝑏𝑏𝑏
2

 ,          𝒚𝒚𝒚𝒚max = max �𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙
2 , 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙

2 � + 𝑏𝑏𝑏𝑏
2
 . 

Using a similar argument as for the no-return approximation, one can approx-

imate the distribution of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max by the lower and upper bound 
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respectively, where the distributions of 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2  and 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 can be approxi-

mated with the method described in Sec. 3.1. The interpretation of the above 

formula is that, since we cannot reasonably assume that the process is either 

de- or increasing, one considers each case separately and decides on the 

one with a higher probability. However, we cannot expect that the approxima-

tions are close to the true distributions on the entire support of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max. 

On the other hand, our experiments suggest that they are close to the true 

distribution in the technically relevant regions, i.e., for small probabilities 

ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦1) and high probabilities ℙ(𝒚𝒚𝒚𝒚max < 𝑦𝑦𝑦𝑦2). 

As an approximation for the PPF of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max for small confidence levels 

𝑞𝑞𝑞𝑞1 and high confidence levels 𝑞𝑞𝑞𝑞2, we use 

𝑦𝑦𝑦𝑦1 = −
𝑏𝑏𝑏𝑏
2
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Using a similar argument as for the no-return approximation, one can approximate 
the distribution of ymin and ymax by the lower and upper bound

for 𝑦𝑦𝑦𝑦low and 𝑦𝑦𝑦𝑦up that describe the lower and upper bounds of the spatial de-

flection window. This means we require the PPFs of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max. 

However, note that deriving the distributions of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max itself requires 

solving an additional first-passage time problem, due to the equivalence of 

maximum and first-passage time problems. For this reason, to render the 

problem feasible, we introduce the additional assumption that the process 

𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡) is either monotonously increasing or monotonously decreasing in 𝑡𝑡𝑡𝑡 ∈

�𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2,  𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2�. Incorporating this assumption yields 

𝒚𝒚𝒚𝒚min = min �𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙
2 , 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙
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2

 ,          𝒚𝒚𝒚𝒚max = max �𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙
2 , 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙

2 � + 𝑏𝑏𝑏𝑏
2
 . 

Using a similar argument as for the no-return approximation, one can approx-

imate the distribution of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max by the lower and upper bound 

 
ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦1) ≥ max �ℙ �𝒚𝒚𝒚𝒚
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respectively, where the distributions of 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2  and 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 can be approxi-

mated with the method described in Sec. 3.1. The interpretation of the above 

formula is that, since we cannot reasonably assume that the process is either 

de- or increasing, one considers each case separately and decides on the 

one with a higher probability. However, we cannot expect that the approxima-

tions are close to the true distributions on the entire support of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max. 

On the other hand, our experiments suggest that they are close to the true 

distribution in the technically relevant regions, i.e., for small probabilities 

ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦1) and high probabilities ℙ(𝒚𝒚𝒚𝒚max < 𝑦𝑦𝑦𝑦2). 

As an approximation for the PPF of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max for small confidence levels 

𝑞𝑞𝑞𝑞1 and high confidence levels 𝑞𝑞𝑞𝑞2, we use 

𝑦𝑦𝑦𝑦1 = −
𝑏𝑏𝑏𝑏
2

+ min �y1
1: ℙ �𝒚𝒚𝒚𝒚

𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙
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< 𝑦𝑦𝑦𝑦1

2� = 𝑞𝑞𝑞𝑞1�  , 
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respectively, where the distributions of ya+l/2 and ya-l/2 can be approximated with the 
method described in Sec. 3.1. The interpretation of the above formula is that, since 
we cannot reasonably assume that the process is either de- or increasing, one 
considers each case separately and decides on the one with a higher probability. 
However, we cannot expect that the approximations are close to the true distributions 
on the entire support of ymin and ymax. On the other hand, our experiments suggest 
that they are close to the true distribution in the technically relevant regions, i.e., for 
small probabilities ℙ(ymin < y1 ) and high probabilities ℙ(ymax < y2 ).

As an approximation for the PPF of ymin and ymax for small confidence levels q1 and 
high confidence levels q2, we use

for 𝑦𝑦𝑦𝑦low and 𝑦𝑦𝑦𝑦up that describe the lower and upper bounds of the spatial de-

flection window. This means we require the PPFs of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max. 

However, note that deriving the distributions of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max itself requires 

solving an additional first-passage time problem, due to the equivalence of 

maximum and first-passage time problems. For this reason, to render the 

problem feasible, we introduce the additional assumption that the process 

𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡) is either monotonously increasing or monotonously decreasing in 𝑡𝑡𝑡𝑡 ∈

�𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2,  𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2�. Incorporating this assumption yields 

𝒚𝒚𝒚𝒚min = min �𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙
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Using a similar argument as for the no-return approximation, one can approx-

imate the distribution of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max by the lower and upper bound 

 
ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦1) ≥ max �ℙ �𝒚𝒚𝒚𝒚
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respectively, where the distributions of 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2  and 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 can be approxi-

mated with the method described in Sec. 3.1. The interpretation of the above 

formula is that, since we cannot reasonably assume that the process is either 

de- or increasing, one considers each case separately and decides on the 

one with a higher probability. However, we cannot expect that the approxima-

tions are close to the true distributions on the entire support of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max. 

On the other hand, our experiments suggest that they are close to the true 

distribution in the technically relevant regions, i.e., for small probabilities 

ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦1) and high probabilities ℙ(𝒚𝒚𝒚𝒚max < 𝑦𝑦𝑦𝑦2). 

As an approximation for the PPF of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max for small confidence levels 

𝑞𝑞𝑞𝑞1 and high confidence levels 𝑞𝑞𝑞𝑞2, we use 

𝑦𝑦𝑦𝑦1 = −
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that is, we use the smallest value of 𝑦𝑦𝑦𝑦1 and the highest value of 𝑦𝑦𝑦𝑦2 that satisfy 

(2) and (3) since our bounds will reach 𝑞𝑞𝑞𝑞1 , 𝑞𝑞𝑞𝑞2  after, respectively before 

ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦1) and ℙ(𝒚𝒚𝒚𝒚max < 𝑦𝑦𝑦𝑦2). The PPFs, 𝑞𝑞𝑞𝑞 →  �𝑦𝑦𝑦𝑦: ℙ�𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 < 𝑦𝑦𝑦𝑦� = 𝑞𝑞𝑞𝑞� and 

𝑞𝑞𝑞𝑞 →  �𝑦𝑦𝑦𝑦: ℙ�𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2 < 𝑦𝑦𝑦𝑦� = 𝑞𝑞𝑞𝑞� can be easily approximated using the Gauß-Tay-

lor method presented in Sec. 3.1. 

4 Experimental System and Employed Algorithms 
For our experiments, we use the pilot-scale optical chute sorter displayed in 

Fig. 2. The sorter has a chute width of 700 mm and is equipped with a Baumer 

VLXT-50C.I Bayer RGB area-scan camera with a maximum resolution of 

2448 × 2048 pixels. The system can use transmitted light for transparent ob-

jects and reflected light for opaque objects. The resolution of the installed 

nozzle array is 1000 Hz in the temporal domain and approximately 5.2 mm in 

the spatial domain, i.e., we can activate the nozzles in discrete steps of 1 ms 

and each nozzle covers approximately 5.2 mm along the nozzle array. 

The employed algorithm implements predictive tracking, as well as line-scan- 

camera-based sorting. For the latter, the line-scan camera is simulated using 

the area-scan camera by reducing the height of the image acquisition to a 

row of 1808 × 2 pixels, allowing a frame rate of 5000 fps. For predictive track-

ing, a frame rate of 250 fps and a resolution of 1808 × 952 pixels is used, 

which corresponds to a camera field of view of approximately 628 × 331 mm. 

For tracking, a time-discrete WN-CA model is used to model the particle mo-

tion in the transport direction, while a time-discrete CV model is used for the 

𝑦𝑦𝑦𝑦-direction. The slope angle for the WN-CA model was 𝛼𝛼𝛼𝛼 = 41.5°, although 

the chute has a slope of 55°. The difference between both accounts for friction 

forces acting on the particles and was determined experimentally. 

The original version of predictive tracking, i.e., the version without considering 

prediction uncertainties for the deflection window, uses the mean function of 

the time-continuous WN-CA model with the same slope angle as before to 

that is, we use the smallest value of y1 and y2 the highest value of that satisfy (2) 
and (3) since our bounds will reach q1, q2 after, respectively before ℙ(ymin < y1 ) and 
ℙ(ymax < y2 ). The PPFs, q → {y: ℙ(y(a-l/2)<y)=q} and q → {y: ℙ(y(a+l/2)<y)=q} can be 
easily approximated using the Gauß-Taylor method presented in Sec. 3.1.

4 Experimental System and Employed Algorithms
For our experiments, we use the pilot-scale optical chute sorter displayed in Fig. 2. 
The sorter has a chute width of 700 mm and is equipped with a Baumer VLXT-50C.I 
Bayer RGB area-scan camera with a maximum resolution of 2448  2048 pixels. 
The system can use transmitted light for transparent objects and reflected light 
for opaque objects. The resolution of the installed nozzle array is 1000 Hz in the 
temporal domain and approximately 5.2 mm in the spatial domain, i.e., we can 
activate the nozzles in discrete steps of 1 ms and each nozzle covers approximately 
5.2 mm along the nozzle array.

The employed algorithm implements predictive tracking, as well as line-scan- 
camera-based sorting. For the latter, the line-scan camera is simulated using 
the area-scan camera by reducing the height of the image acquisition to a row of 
1808  2 pixels, allowing a frame rate of 5000 fps. For predictive tracking, a frame 
rate of 250 fps and a resolution of 1808  952 pixels is used, which corresponds 
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to a camera field of view of approximately 628  331 mm. For tracking, a time-
discrete WN-CA model is used to model the particle motion in the transport direction, 
while a time-discrete CV model is used for the -direction. The slope angle for the 
WN-CA model was  41.5°, although the chute has a slope of 55°. The difference 
between both accounts for friction forces acting on the particles and was determined 
experimentally.

The original version of predictive tracking, i.e., the version without considering 
prediction uncertainties for the deflection window, uses the mean function of the 
time-continuous WN-CA model with the same slope angle as before to determine the 
time of arrival and the mean function of the time-continuous CV model to determine 
the location of arrival. We use this version for comparison with our new method (in 
the remainder of the paper simply referred to as predictive tracking). In line-scan-
camera-based sorting and the original version of predictive tracking, the size of a 
deflection window is determined based on the size and velocity of the respective 
particle, plus a fixed enlargement (as explained in Sec. 2.2). In our newly proposed 
version of predictive tracking (hereinafter referred to as adaptive deflection), the size 
of the deflection window is determined by the uncertainty of the motion prediction 
of the particle’s front and back and uppermost and lowermost edge, as described 
in the previous section. 

Fig. 2. Image of the sorting system. The material is fed into the system via a vibration feeder and a 
chute (on the right in the image). It is perceived by an area-scan camera, which is located at the top 
left of the image. Below the chute is an array of compressed air nozzles that separate the material.
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5 Evaluation
Our evaluation consists of two parts: We first demonstrate the power of our 
approximation schemes by a numerical verification and then, after some parameter 
tuning, compare the adaptive deflection method with line-scan-based prediction 
and predictive tracking in sorting experiments. For both parts, we consider the pilot-
scale optical chute sorter presented in the previous section (respectively, a simple, 
geometric model of it, for the numerical verification) and recycling glass particles 
having diameters in the range of 6 to 30 mm.

5.1 Numerical Verification of the Derived Distributions
We demonstrate the soundness of our approximations introduced in Sec. 3 by 
comparing them with Monte Carlo simulations. For this, we consider the example 
of a virtual particle moving perfectly according to the WN-CA model in the transport 
direction and according to the CV model orthogonal to the transport direction. For 
the state distribution used as input of our approximations and all parameters of the 
methods, we use the values obtained by tracking a typical particle from our sorting 
task and the same parameters as for the final sorting experiments.

The Monte Carlo simulation uses the discrete-time counterparts of the motion models 
with very small time increments. In each time step, it checks if the particle center, 
front, and back have already crossed the nozzle array. Likewise, the particle center, 
uppermost, and lowermost edge locations are recorded within the period when the 
particle passes the nozzle array. From this information, we then extract histograms 
used as (approximate) ground truth for comparison with our approximations.

The results for the approximation of the FPTD and the -position at the first arrival 
are displayed in Fig. 3. The approximations are generally very close to the Monte 
Carlo histograms, with no differences in PDF and CDF visually recognizable. 
For comparison, the plots also show uniform distributions corresponding to the 
conventional case where a point prediction (in this case from predictive tracking) is 
used with a window length equal to the particle length divided by an estimate of the 
particle velocity in the -direction or the particle width, respectively, and no additional 
enlargement. Note that our approximations capture the true distributions way more 
precisely, but at this point do not account for the particle extents.
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Fig. 3. The PDF and CDF of the first-arrival time distribution (left) and the distribution of the particle 
location along the nozzle array (right) of a typical particle from our sorting experiments. “No-return 

approx.” denotes the similarly named approach from (Reith-Braun, Thumm, et al., 2023) for approximate 
FPTD. “Gauß-Taylor approx.” denotes the approach proposed in Sec. 3.1 for approximation of the 

-location at the arrival time. “Uniform distribution” denotes the conventional approach, i.e., using a point 
prediction (in this case from predictive tracking, visualized by the black vertical line) for the particle arrival 
time and location and a window length with no additional enlargement. The shaded parts (denoted “MC 

simulation”) display histograms of the respective distributions obtained by Monte Carlo simulations.

The results of our proposed methods for considering particle extents are visualized 
in Fig. 4. Again, the approximations are able to capture the true distributions for 
the particle under consideration with high precision. For comparison, again the 
same conventional approach as in Fig. 3 is displayed. Note, however, that it is 
here described by Dirac distributions (instead of uniform distributions), since we are 
now considering the particle’s front and back arrival time, and its uppermost and 
lowermost edge location, respectively. Note that our approximation for a reasonably 
high always yields larger deflection windows than the ones from the conventional 
approach without additional enlargement, since the prediction uncertainty then adds 
up with the particle size. However, when the deflection windows of the conventional 
method are additionally enlarged, the approximation can also yield smaller deflection 
windows than the conventional method even if high values of  are used.
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Fig. 4. The PDF and CDF of the front and back arrival time distribution (left) and the distribution 
of the minimum and maximum particle edge location at the nozzle array (right) of a typical 

particle from our sorting experiments. “No-return approx. with extents” denotes the approach 
described in Sec. 3.2.1. Likewise, “Gauß-Taylor with extents” denotes the approach described 

in Sec. 3.2.2. “Dirac with extents” denotes the usual approach, i.e., using a point prediction 
(in this case from predictive tracking) for the particle front and back arrival and the minimum 

and maximum particle edge, respectively. The shaded parts (denoted “MC simulation”) 
display histograms of the respective distributions obtained by Monte Carlo simulations.

5.2 Sorting Experiments
The mass flow to be sorted consists of a mixture of glass recycling of 500 g white 
and 75 g stained glass. These particle types can be easily distinguished visually 
so that misclassifications can be precluded, and the sorting results are directly 
indicative of the effectiveness of the underlying algorithm for optical sorting. The goal 
of our sorting trails was to eject stained glass. The approximate mass flow during 
the experiments was 170 g/s. In total, we conducted five sorting trails for each of 
the three methods: line-scan prediction, predictive tracking, and adaptive deflection. 
In the following, we first describe our evaluation metrics and how we obtained the 
parameters of our methods, before finally presenting the sorting results.

5.2.1 Metrics
For evaluation of the sorting accuracy, we consider the true negative rate 
TNR = TN/(FP + TN) and the true positive rate TPR = TP/(TP + FN), where positive 
particles are those that should not be ejected (white glass, in our case). A high 
TNR thus indicates a high purity of the non-ejected fraction (there are only a few 
unwanted particles left), whereas a high TPR indicates a high purity of the ejected 
fraction (there are only a few co-deflected particles). As a measure for evaluating 
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the compressed air consumption, we record the nozzle time, i.e., the cumulate time 
for which the nozzles were opened.

5.2.2 Preliminary Sorting Experiments and Parameter Tuning
The parameters of our new approach are the power spectral densities S (in x- and 
y-direction) and the confidence levels q (temporal and spatial). For simplicity, we 
assume the same value of S in both directions. Furthermore, we use the same S 
for the motion models in the Kalman filters of the MTT part of predictive tracking. 
For the confidence levels, we chose the same q = 0,95 for all confidence intervals. 
Note that strictly speaking, this does not imply that we wish to eject 95 % of all 
unwanted particles since we apply q to the temporal and spatial deflection window 
independently. It remains to find a suitable value for the power spectral density S. 
In general, this is a difficult task. There exist multiple approaches to learning the 
noise from data in the literature, e.g., expectation maximization (Ghahramani & 
Hinton, 1996), dual (Nelson, 2000), or ensemble Kalman filtering methods (Stroud 
& Bengtsson, 2007), each of which has their pros and cons (see also the survey by 
(Zhang et al., 2016)). Yet, the choice of S has a large influence on the size of the 
obtained deflection widows, and therefore we require a convenient method.

Here we propose to tune S using a calibration method, i.e., we wish to choose  
such that 95 % of all unwanted particles appear at the nozzle array within the 
corresponding confidence interval. For this, we record a data set of particle tracks 
of the unwanted class and track the particles until they have crossed the nozzle 
array (for this purpose, we adjust the camera field of view, so that we can observe 
the nozzle array). Using the recorded tracks, we then conduct “virtual” sorting 
experiments, whereby we run the algorithm with a specific S and count the number of 
hits within the confidence interval. In this step, to obtain a more accurate estimation 
of the particles’ time and location of arrival at the nozzle array (respectively its front, 
back, and upper and lower boundary), we use a linear interpolation between the last 
measurement before and the first measurement after the nozzle array, similar to the 
concept of a virtual nozzle (see e.g., (Pfaff et al., 2015; Reith-Braun, Bauer, et al., 
2023)). We then perform a line search to find the desired value of S.

To ensure a proper comparison of the approaches, we chose the length of the 
enlargement of the deflection windows of the line-scan and conventional predictive 
tracking method so that a similar nozzle time as for the adaptive deflection approach 
with q = 0,95 was achieved. This is to compensate for the effect that we can generally 
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achieve a higher TNR with a longer nozzle time. Finally, this resulted in an amount 
of 1.6 ms and 3.47 mm by which the deflection windows were enlarged.

5.2.3 Sorting Results
Our sorting results are visualized along with the nozzle times in Fig. 5. All three 
approaches yield high TNRs in the range of 90 to 100 % and high TPRs of 
approximately 99 % and higher. Comparing the TNR, predictive tracking achieves, 
as expected, on average slightly higher accuracies than line-scan-based prediction. 
Our new method improves on the results of predictive tracking and achieves by 
far the highest TNR (with an average of 96.7 %, compared with 94.6 and 94.0 % 
for predictive tracking and line-scan-based prediction). In addition, it also shows 
the lowest deviations between the different runs. Comparing the TPR, again, our 
new approach has the highest overall accuracy, slightly outperforming the other 
approaches. Looking at the cumulative activation times of the nozzles, the nozzle 
time is quite similar for all approaches, which indicates a proper balance within the 
comparison.

Fig. 5. Results of the sorting experiments for the three compared algorithms for optical sorting. Each 
point depicts the result of one of the five sorting trails. The box plots show the first, second, and 

third quartile of the results of the sorting trails with the whiskers extending to the most distant data 
point within the 1.5-fold interquartile range, starting from the upper or lower quartile, respectively.
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6 Conclusion
We proposed a new method based on quantifying prediction uncertainty for 
determining the length of the deflection windows in optical sorting. Numerical 
simulations demonstrate that the approximations for the underlying distributions yield 
high precisions for the motion behavior of typical particles and are therefore suitable 
for application in optical sorters. Our sorting results show superior accuracies of the 
new method compared with line-scan-based prediction and predictive tracking, with 
an average TNR of approximately 96.7 %.

The proposed method therefore not only offers the possibility to further improve the 
sorting accuracy but also, and probably more importantly, to reduce the number 
of incorrectly deflected particles and the energy consumption by choosing the 
deflection window for each particle only as long as necessary. Future work may 
focus on this aspect, e.g., by incorporating a more accurate model of the particle–
nozzle field contact and the conditions that must be satisfied for a particle to be 
ejected. A simple approach in this context may be to artificially reduce the size of a 
particle by a certain factor to account for that one may wish to target a potentially 
smaller range than given by the particle extent.
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Abstract
The main component of a sensor-based sorting system is an imaging sensor and 
the associated data processing unit for detecting and classifying bulk material 
objects. High occupancy densities and objects with similar appearance lead to 
increasing problems for conventional image processing algorithms in object and 
class separation. Therefore, in this article, specialized Deep Learning approaches 
were applied to two datasets for instance segmentation. Due to the need for a 
large amount of training data for such models, a method for synthetic training data 
generation has been developed. Subsequently, established model architectures as 
well as an own approach specialized for the problem characteristics is presented and 
compared regarding their detection performance. Finally, the models are evaluated 
in terms of their speed and therefore their potential use in a sorting system. Our 
approach more than halves the inference time of the fastest model while achieving 
the best detection performance.
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1 Introduction
Sensor-based analysis of bulk materials has numerous areas of application, whether 
in the food industry or in the recycling of waste streams such as plastic, construction 
and demolition waste or glass sorting. Sensor-based sorting (SBS) systems typically 
use imaging sensors to characterize and sort bulk materials fully automatically and 
with high throughput. Individual objects must be recognized, object boundaries 
delimited and individual instances classified (Gundupalli et al., 2017). Extracted 
information about the material stream can then be used for subsequent sorting. 
In addition, knowledge of the material stream composition and properties enables 
adaptive parameterization of the downstream processing steps (Küppers, o. J.).

1.1 State of the art and challenges in SBS image analysis
The choice of sensors used in sensor-based sorting depends on the material 
properties on which the sorting decision is based. Color cameras are used for 
materials that can be distinguished based on their visual appearance. However, 
numerous materials, e.g., different types of plastic, cannot be distinguished by 
color characteristics, but only by their chemical molecular structure. The use of 
hyperspectral sensors in the near-infrared range is suitable for problems that require 
material-specific differentiation (Amigo et al., 2015).

Current state of the art methods for data analysis differ depending on the type of 
sensor used. However, they have in common that they are analyzed pixel by pixel. 
In the following, the use of color sensors is considered and a common processing 
chain is outlined.

Firstly, the image data is classified pixel by pixel (semantic segmentation) based 
on its three-dimensional feature vector (R-, G-, B-channel). These color features 
are learned, for instance, using a few training images that only show objects of one 
class. The classification decision is typically done using simple statistical methods. 
Object boundaries are differentiated using a Connected Component Analysis 
(CCA) or similar algorithms. Optionally, complex splitting algorithms can be used to 
separate contacting objects.

In the context of sensor-based sorting, conventional image processing methods 
are facing two major challenges. Firstly, the detection of object boundaries (single 
instances) through algorithms leads to a strongly decreasing detection performance 
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with increasing occupancy density. Additionally, this process can be highly 
computationally intensive. Secondly, differentiating between distinct classes with 
similar color causes difficulties, despite having varying shapes or surface structures 
(see Figure 1). The use of Convolutional Neural Networks (CNNs) provides potential 
solutions to these challenges using information from neighboring pixels for image 
analysis. This additional contextual information makes it possible to also use shape 
and surface features for robust object detection and class differentiation (Gu et al., 
2018).

Deep Learning has revolutionized the field of image processing, offering new 
possibilities for enhancing sensorial material detection and flow characterization. 
This can be used to improve accuracy and efficiency of sensor-based sorting 
systems and provide additional information on the composition of input material 
streams, thereby optimizing and controlling the entire sorting processes.

However, two major challenges exist for the practical implementation of these 
methods in sensor-based sorting systems (Krizhevsky et al., 2012). Firstly, these 
techniques require a significant amount of labeled training data for model training. 
Secondly, currently popular model architectures for instance segmentation such as 
Mask R-CNN (He et al., 2018), YOLACT (Bolya et al., 2019) and SOLOv2 (Wang et 
al., 2020), are not optimized for this specific problem domain, i.e., meeting real-time 
requirements as well as archiving high detection accuracy for a high number of small 
objects (Howard et al., 2017).  

1.2 Contribution
In this contribution, we present strategies and solutions to overcome the presented 
challenges and make Deep Learning-based approaches applicable in sensor-based 
sorting. For this purpose, we acquire and analyze datasets for two exemplary 
sorting tasks. Our approach reduces data labeling requirements and computational 
demands, i.e., inference times. Hence, this will advance the industrial feasibility of 
these methods.

We provide a detailed analysis of Deep Learning usage for instance segmentation 
in sensor-based sorting systems. This analysis includes appropriate training 
strategies, specifically training data generation. The subsequent phase entails 
the selection of model architectures, considering the trade-off between real-time 
capability and achieved accuracy. The presented pipeline enables the generation 
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of authentic synthetic training data. We then train and compare models for instance 
segmentation. Besides established top-down approaches, we consider a more 
suitable self-designed bottom-up approach. Further descriptions of both strategies 
can be found in chapter 3.2. The evaluation was carried out on real-recorded bulk-
image Furthermore the models real-time capability for an explicit use in sensor-
based sorting was analyzed.

Fig. 1: Left: Original image of oats and husks, right: attribute image, calculated 
from pixel-by-pixel classification based on color features.

2 Methods
The following section describes the methods and datasets used. Methods for 
instance segmentation are considered and presented. 

In general, segmentation in image processing refers to the task of summarizing 
the pixels of an image according to a homogeneity criterion, e.g., the affiliation of 
an object. Segmentation by pixel-by-pixel class assignment is also referred to as 
semantic segmentation. However, with this type of segmentation, no distinction is 
made between different instances of the same classes. With instance segmentation, 
on the other hand, individual instances are segmented. Each instance is also 
assigned a class. Unlike semantic segmentation, not every pixel has to be part of 
a mask.
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Optimized ejection and a general characterization of a material stream requires 
additional information such as the number of objects, object size, etc. Since 
this information cannot be derived through semantic segmentation, instance 
segmentation is required.

2.1 Deep Learning Methods
In the following studies, three established Deep Learning methods for instance 
segmentation were selected, trained and applied to images acquired using a sensor-
based sorting system. Top-down approaches, which first detect individual instances 
for which instance masks are then generated, have proven particularly successful 
in this context. They often consist of a backbone for feature extraction, as well as 
a neck and a head (Hafiz & Bhat, 2020). Fully convolutional architectures such as 
ResNet (He et al., 2015) are used as backbone architectures. The neck generates 
scaled feature maps that are used to segment objects of different sizes. The head 
detects individual objects on the generated feature maps and generates suitable 
masks. In more detail, the head often forms a Feature Pyramid Network (FPN), 
which generates feature maps for different scales of an image (Lin et al., 2017). The 
semantic meaning for FPNs is the same across all scaling levels.

Almost all top-down segmentation and detection models result in multiple detections 
of instances. The model then generates several bounding boxes or masks that 
overlap considerably, as they are actually intended for the same object. Hence, the 
excess masks must be suppressed. Top-down approaches therefore require non-
maximum suppression (NMS) as a post-processing step. All masks or bounding 
boxes that have a certain overlap in terms of a threshold value with the detection that 
has the highest score are then searched for. These detections are then discarded 
as they are classified as multiple detections due to the strong overlap with a lower 
score. This procedure is repeated for the remaining masks.

2.2 Materials and Datasets
The methods and training strategies presented were evaluated and assessed using 
two different datasets. Both datasets differ in their properties and potential problems 
with object detection and mask generation.
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The first dataset consists of approximately 4 mm to 6 mm sized fragments of brick 
and sand-lime brick. Both classes can be easily distinguished by simple color 
characteristics or differences in brightness. Due to the high variability in shape and 
size of the instances, the challenge here is to find the instance masks and separate 
adjacent instances. Particularly with high occupancy densities, the appearance of 
the images resembles a bulk.

The second dataset consists of oat grains and husks. The small object size results 
in images with a high object density. Both classes hardly differ in color tone and 
brightness but can be distinguished by their size and shape. The shape of the husk 
is highly variable and therefore useful for class differentiation, see Figure 2.



51

Potential of Deep Learning methods for image processing in sensor-based sorting

Fig. 2: Example image and class-dependent distribution of the size of the instances 
contained in the images for the brick and sand-lime brick data set (top) and the oats 

and husk data set (bottom). The color of the bars corresponds to the mean color of the 
objects within the respective class. The light areas indicate the variance in size.
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3 Pipeline for Deep Learning-based image analysis in 
SBS

In the following, a pipeline is presented that is suitable for the training of Deep 
Learning models for the instance segmentation of bulk material images. It consists 
of the generation of synthetic training data and the selection of suitable models with 
subsequent training and evaluation.

3.1 Synthetic image generation
Deep Learning approaches require a large amount of labelled data for model training 
(Goodfellow et al., 2016)s. Manually labelling a single 256 x 256 training image of 
a bulk material scene with more than 100 objects may already take more than one 
hour. This is not feasible for obtaining several hundred training images. Therefore, 
an approach for the synthetic generation of labelled training data for instance 
segmentation of bulk material images was developed (see Figure 3).

Training data generation has several goals. Every single training image should be 
individual and unique to prevent the models from being adapted to given positioning 
patterns. In addition, the trained models should be made robust against disturbing 
influences such as variance in the background brightness within an image, varying 
illumination, or variances in the occupancy density, with the aim of achieving good 
generalization. 

Segmentation on the synthetic training data may therefore be more difficult in certain 
respects than on the real data. For example, the arrangement of the instances in the 
training data may be more chaotic or have a higher maximum occupancy density. 
Models trained on such synthetic data might be more robust while dealing with 
perturbations in real-world images.

There are already approaches that have dealt with the synthesis of homogeneous 
object clusters (HOC). For example, in (Wu et al., 2018), an approach for the 
realistic placement of objects is proposed in which, similar to a GAN, a discriminator 
is trained to distinguish real from synthetic images. In (Toda et al., 2020) it is shown 
that with a simple approach, which includes the creation of a dataset by randomly 
placing grains of cereal on a background, a Mask R-CNN model can be trained.



53

Potential of Deep Learning methods for image processing in sensor-based sorting

Fig. 3: Illustration of the procedure for synthetic training data generation, consisting of 
instance database generation from extracted objects and image generation.

3.1.1 Instance database creation
The instance database, from which the synthetic images are to be generated, 
consists of individual, detached instances. They form the basis for generating 
densely packed bulk material training images.

Recordings of a single class with a very low occupancy density are required for the 
creation. This allows individual, exposed instances to be extracted automatically 
using conventional image processing algorithms. Realistic insertion of individual 
instances, without the creation of hard or dark object edges, is necessary for usable 
training data. Object edges may not lie in the focal plane of the objects, resulting in 
a soft transition to the background. Therefore, simple masking and insertion is not 
possible and leads to the problems mentioned. Realistic images contain smooth 
transitions at object boundaries, which consist of a mixture of the object color of 
the object edge and the background color. This is modeled with so-called alpha 
blending, in which the resulting color p can be defined as a mixture of object oRGB 
and background bRGB (Porter & Duff, 1984):

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛼𝛼𝛼𝛼  ∙  𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + �1 −  𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛼𝛼𝛼𝛼 � ∙  𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

This can be resolved to obtain the final object color. However, numerical in-

stabilities occur at low alpha values 𝑜𝑜𝑜𝑜∝. Therefore, the alpha channel was 

estimated using an optimization problem. The final mask of the object is then 

generated by merging the estimated alpha mask and the hard mask when 

extracting the object instances. This process is very important to ensure that 

individual objects cannot be trivially distinguished from each other based on 

unrealistic object boundaries. 

3.1.2 Image generation 

An instance is now randomly drawn from the created instance database, de-

pending on the desired percentage class distribution, and realistically posi-

tioned on a background. The positioning must be realistic, random, but still 

controllable in terms of occupancy density and maximum tolerated overlap 

(or even collision-free). 

If objects are randomly dropped onto a flat surface that was previously divided 

into square elements of the same size, then the number of objects corre-

sponds to that on a field of a Poisson distribution with a defined density 

(Jondral & Wiesler, 2002). This property can be achieved if the coordinates of 

an object to be placed are drawn from a normal distribution. However, this 

does not yet consider the area and thus the resulting overlap of objects, which 

makes the resulting images look unrealistic. Due to optimized material feed-

ing on a conveyor belt, objects do not lie on top of each other but rather next 

to each other and only touch or overlap minimally. 

To overcome these challenges, a problem specific adaption of the well know 

Poisson Disc Sampling algorithm (Bridson, 2007) is presented, which makes 

it possible to efficiently place arbitrarily oriented ellipses of different sizes 

without overlapping. In this way, each instance can be placed collision-free 

using its minimum enveloping ellipse. The degree of overlap can also be con-

trolled by reducing the size of this ellipse. The conventional Poisson disc al-

gorithm ensures that no two samples are too close to each other. Proximity 
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This can be resolved to obtain the final object color. However, numerical instabilities 
occur at low alpha values oα. Therefore, the alpha channel was estimated using an 
optimization problem. The final mask of the object is then generated by merging 
the estimated alpha mask and the hard mask when extracting the object instances. 
This process is very important to ensure that individual objects cannot be trivially 
distinguished from each other based on unrealistic object boundaries.

3.1.2 Image generation
An instance is now randomly drawn from the created instance database, depending 
on the desired percentage class distribution, and realistically positioned on a 
background. The positioning must be realistic, random, but still controllable in terms 
of occupancy density and maximum tolerated overlap (or even collision-free).

If objects are randomly dropped onto a flat surface that was previously divided into 
square elements of the same size, then the number of objects corresponds to that 
on a field of a Poisson distribution with a defined density (Jondral & Wiesler, 2002). 
This property can be achieved if the coordinates of an object to be placed are drawn 
from a normal distribution. However, this does not yet consider the area and thus the 
resulting overlap of objects, which makes the resulting images look unrealistic. Due 
to optimized material feeding on a conveyor belt, objects do not lie on top of each 
other but rather next to each other and only touch or overlap minimally.

To overcome these challenges, a problem specific adaption of the well know Poisson 
Disc Sampling algorithm (Bridson, 2007) is presented, which makes it possible to 
efficiently place arbitrarily oriented ellipses of different sizes without overlapping. In 
this way, each instance can be placed collision-free using its minimum enveloping 
ellipse. The degree of overlap can also be controlled by reducing the size of this 
ellipse. The conventional Poisson disc algorithm ensures that no two samples are 
too close to each other. Proximity is defined by the radius of the Poisson disc, which 
corresponds to half the distance between the two closest samples.

The following specific adjustments have been made:

•	 Collision free placement: extend Poisson Disk Sampling for ellipses of 
different sizes.

•	 Varying density: modify Poisson Disk Sampling for uniformly distributed 
samples.
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•	 Disk radius is gamma distributed. The disk size of existing samples increases 
with each creation step.

•	 Two samples collide if the combined area of their disks is greater than the 
area of a circle whose radius is the distance between the two samples.

The object density can be defined by a parameter of the gamma distribution when 
randomly drawing the disk sizes. Resulting synthetic images from both datasets can 
be seen in Figure 4.

Fig. 4: Example images of the two datasets consisting of brick and sand-lime brick (top) and oats 
and husk (bottom), each with a real image (left) and a synthetically generated image (right).
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3.2  Models for Instance Segmentation
Established top-down models for instance segmentation used as reference models 
in the investigation are Mask R-CNN (He et al., 2018), YOLACT (Bolya et al., 2019) 
and SOLOv2 (Wang et al., 2020).

However, the instance segmentation of bulk solids differs greatly from the tasks 
that motivated the development of the aforementioned models. These models 
have been developed for the use with specific large image datasets, which include 
many different object classes at different scales in everyday situations. Images of 
bulk materials are characterized by some simplifications, but also by aggravating 
differences, see Table 1.

Tab. 1: Differences between large image datasets and images of 
bulk material in terms of their image characteristics.

Large image datasets Bulk material images

Few to many objects per image (wide 
range of number and size) Very many small objects per image

Varying perspective Consistent perspective

Lighting invariance Uniform lighting

Different object scaling Constant object scaling

The complexity of these model architectures is often high due to the necessary 
robustness against changing influences (Howard et al., 2017). In preliminary 
experiments we found that detecting a high number of small objects in bulk material 
images causes difficulties and is a disadvantage in terms of the suitability of these 
models. In addition to the three comparison architectures, a separate approach was 
tested. We developed it specifically for bulk images, i.e., the detection of a very high 
number of small objects with a short inference time.

A bottom-up approach was designed in which the pixels of the input image are 
projected into a vector space in which they can then be clustered into objects (De 
Brabandere et al., 2017). They generally have the disadvantage of poor mask 
accuracy with high variability of the expected large object shapes. Especially with 
a very high number of small objects, this disadvantage is greatly reduced and even 
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becomes an advantage compared to top-down approaches. In addition, there is the 
advantage of a more efficient inference time with a high occupancy density.

The own bottom-up approach is based on a Fully Convolutional Neural Network 
(FCN) for semantic segmentation, which output is replaced by a custom head 
consisting of four outputs (see Figure 5). The first output provides a mask for pixel-
by-pixel background segmentation. The second output provides an estimate of the 
relative position of the object center for each pixel that is part of an object. The third 
output provides the centers of the objects, i.e. the probability that each pixel is the 
center of an object, while the fourth output provides information about the class 
affiliation of the pixels or more precisely the object centers (see Figure 6).

Fig. 5: Construction of the new head with the four outputs for the realization of an 
instance segmentation together with a fully convolutional backbone network.

The loss function in training is made up of the sum of the individual loss functions of 
the four outputs. According to the order of the outputs, the binary cross entropy, the 
mean squared error (MSE), the binary cross entropy and the focal loss were used 
as individual loss functions.

Merging all output data enables instance segmentation in a subsequent post-
processing step. Firstly, the local maxima of the third output are searched for. 
Each maximum found, is regarded as an instance center. Each foreground pixel, 
defined by the mask of the first output, is assigned to an object. The relative pixel-
by-pixel center estimation of the second output is used for differentiation of individual 
objects. Each foreground pixel is assigned to the object center whose center has the 
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smallest Euclidean Distance to the relative object center point estimate. The class 
assignment is made by the estimated class of the fourth output at the location of the 
instance centers multiplied with output 3.

Fig. 6: Visualization of the four outputs (output 1-4 from left to right).

3.3 Training Strategies
All four models were trained with the same data. For the training, square images with 
a size of 256 x 256 pixels were generated. A mixture ratio of the two classes of 1:1 
was used. Randomly, images of different occupancy densities between 25 and 80 
% were generated with an average value of approx. 45 %. The maximum overlap of 
two instances of 8 pixels for the brick and sand-lime brick dataset and 4 pixels for 
the oats and husk dataset was selected. A total of 2000 synthetic training images 
were generated in each case.

For both data sets, real images were also acquired to test the models and annotated 
by hand. A total of 30 images per data set were labeled. We ensured that the 
occupancy densities in these images covered the same distribution and range as 
the training data.

4 Results
In the following, the results of the trained models are analyzed to determine their 
suitability for use in bulk goods detection. All models were trained on one of the two 
synthetic datasets and then evaluated on synthetic test data as well as manually 
labelled real test images regarding their achieved mean Average Precision (mAP) 
score.
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The Average Precision (AP) is a measure of the detection or segmentation accuracy 
of detection or instance segmentation models. An object is considered correctly 
segmented for the AP calculation if the overlap of the predicted mask with a ground 
truth mask is sufficiently high. The intersection over union (IoU) is used as a 
measure for the overlap (UoU = Area of Overlap / Area of Union). Depending on 
IoU, the metric is stricter in terms of approved detections. The mAP is calculated 
by averaging over each class-depended Average Precision (AP) as defined for the 
COCO dataset (Lin et al., 2015).

4.1 Synthetic Data
The mAPs achieved are shown in Table 2 and Table 3. It can be seen that Mask 
R-CNN and our own approach achieve the best segmentation accuracy on both 
datasets. A closer look at the correlation between object size and segmentation 
accuracy (mAP) provides information about the suitability of the models for a given 
problem.  This allows the performance of the models to be analyzed on different 
object sizes. All models have problems with the detection of small objects. Small 
inaccuracies in the estimated masks already have a relatively large negative impact 
on the metric compared with large objects. In addition, images with a high occupancy 
density have a larger number of small objects, as these fit and are located well in 
small gaps. This affects both the synthetic and the real images and causes a poorer 
metric in the object size-dependent analysis.

Further experiments were performed to investigate the mAP score at different 
occupancy densities. The mAP was calculated for each individual image of the 
synthetic sand-lime brick dataset and plotted against the occupancy density. As 
expected, the detection and mask accuracy decrease with increasing occupancy 
density. The scatter of the Mask R-CNN results is lower than for the other models. At 
very high occupancy densities, the own approach has an advantage over the other 
models, especially Mask R-CNN, which in turn has advantages at lower occupancy 
densities.

It should be noted that the mAP score of the entire dataset is calculated using the 
Precision Recall curve of all detections of all images and not by averaging the 
individual image-specific mAP scores achieved. Images with many objects have a 
greater influence on the metric and cause the advantage of the own approach over 
Mask R-CNN.
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Tab. 2: Achieved mAP scores of the four different models on the 
synthetic brick and sand-lime brick dataset.

Own approach Mask R-CNN YOLACT SOLOv2

mAP 
[IoU=0.50:0.95]

0.674 0.655 0.305 0.440

mAP [IoU=0.50] 0.904 0.907 0.702 0.869

mAP [IoU=0.75] 0.793 0.769 0.216 0.413

Tab. 3: Achieved mAP scores of the four different models on the synthetic oats and husk dataset.

Own approach Mask R-CNN YOLACT SOLOv2

mAP [IoU=0.50:0.95] 0.722 0.716 0.343 0.493

mAP [IoU=0.50] 0.920 0.940 0.757 0.938

mAP [IoU=0.75] 0.855 0.863 0.273 0.460

4.2 Real Data
The results of the evaluation of the trained models on real images can be found 
in Table 4 and Table 5. In addition to the evaluation of the detection performance 
of the models, it enables an analysis of the transferability of the models trained on 
synthetic data to be applied to real images. The real images of the test dataset were 
manually annotated in a very time-consuming process.

As expected, the mAPs drop slightly for both datasets compared to the evaluation on 
synthetic test data for all models. Only SOLOv2 and YOLACT achieve comparable 
results on the sand-lime brick dataset. The evaluation shows that SOLOv2 has a 
better mAP than Mask RCNN on both datasets. A closer examination of the metrics 
shows a decrease in mask accuracy, while the detection capability remains the 
same. In general, our approach and SOLOv2 learn better, more generalized features 
on the synthetic training data. One of the reasons is the lower complexity and size of 
the models. YOLACT has a consistently low detection performance. Examination of 
the results reveals problems with the accuracy of the masks in very dense scenarios.
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Tab. 4: Achieved mAP scores of the four different models on the real brick and sand-lime brick dataset.

Own approach Mask R-CNN YOLACT SOLOv2

mAP [IoU=0.50:0.95] 0.573 0.495 0.419 0.608
mAP [IoU=0.50] 0.935 0.940 0.848 0.941
mAP [IoU=0.75] 0.685 0.367 0.167 0.541

Tab. 5: Achieved mAP scores of the four different models on the real oats and husk dataset.

Own approach Mask R-CNN YOLACT SOLOv2

mAP [IoU=0.50:0.95] 0.387 0.361 0.153 0.408
mAP [IoU=0.50] 0.812 0.835 0.520 0.698
mAP [IoU=0.75] 0.349 0.251 0.102 0.317

4.3 Real time capability
Certain real-time conditions must be ensured for an application in a sensorbased 
sorting system. When using Deep Learning models for instance segmentation, 
this often becomes a critical factor, as many models were not designed for such 
applications. It must also be noted that the inference time, including post-processing 
of the data up to instance segmentation, depends on the number of detected objects.

In general, the inference time can be further optimized using suitable Frameworks 
such as TensorRT for Nvidia GPUs. In the following, this was dispensed with and 
primarily enables a comparison of the models with each other. Figure 7 plots the 
relationship between inference time and the mAP achieved by the models on the 
synthetic test datasets. The established models behave as expected, faster models 
such as YOLACT have a lower detection performance than large and slow models 
such as Mask R-CNN. The proprietary approach was developed for the instance 
segmentation of bulk material. It shows both the highest mAP value and the lowest 
runtime.
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Fig. 7: Achieved mAP plotted over the achieved inference time, using a NVIDIA GeForce RTX 3080, 
of the different models on the brick and sand-lime dataset (left) and the oat and husk dataset (right).

5 Conclusion
The limitations of classical image processing algorithms for instance segmentation 
were demonstrated using two real bulk material datasets, consisting of bricks and 
sand-lime bricks as well as oats and husks. The results show that Deep Learning 
methods perform better with very high occupancy densities and material classes 
that do not differ in their color features. The presented training pipeline, consisting 
of the synthetic training data generation, is very well suited to avoid time-consuming, 
manual labeling. Generated images are realistic in their object arrangement and 
show sufficient stochastic fluctuations to learn robust models. The selection of 
models revealed the problem of established architectures, which sometimes do 
not perform well with the large number of small objects. Our approach has less 
than half the inference time compared to the fastest model and outperforms the 
detection performance and mask accuracy of the most accurate model. When using 
Deep Learning models, it is recommended using own architectures for instance 
segmentation, like the presented bottom-up approach, as these can satisfy real-time 
conditions for sensor-based sorting tasks.
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Fig. 8: Detection result of a Deep Learning based instance segmentation at high occupancy density of 
bricks (red masks) and sand-lime bricks (blue masks). The missing segmentation of the bottom lines is 
the result of the use of line scan sensors and the absence of padding in the model architecture used.
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Abstract
This contribution assesses the latency values of a field programmable gate array 
(FPGA) based sorting system, with a graphics processing unit (GPU) involved for 
convolutional neural network (CNN) inference. The system reaches a mean overall 
latency of 2.1 ms while the jitter is 4.0 ms for repeated single object experiments. 
The jitter originates from memory operations on the FPGA and dropouts in the PC 
processing pipeline. For multiple object experiments a currently unknown latency 
source is observed, increasing the maximum observed PC pipeline latency to 10.4 
ms.

7 Introduction
The whole field of industrial image processing is talking about the usage and 
benefits of convolutional neural networks (CNNs) or other algorithms from the 
field of AI. Major benefits using CNNs are: The amount of required domain specific 
knowledge is reduced, because the user may annotate the classes, train the used 
model, and deploy the model directly to the machine – while he would need to know 
the influence of the parameters of a comparable rule-based system. Further, the 
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complexity for the adaption of a classifier to a new product is reduced because the 
source code of the system does not need to be changed. The downside is – together 
with the need for meaningful training data – the high computational expense in the 
inference compared to an optimized rule-based system. This leads to limitations in 
data throughput. To compensate this, most applications rely on graphics processing 
units (GPUs), which are more suitable for most computational tasks in CNNs than 
Central Processing Units (CPUs). This leads to a latency bottleneck because data 
transfer and execution control on GPUs needs extra time.

The fully Field Programmable Gate Array (FPGA) integrated sorting approach by 
MSTVision GmbH achieves short image processing latencies (<1 ms) by running 
the whole rule-based sorting task on an FPGA. Low latencies keep the reaction time 
between line scan image acquisition and separation actuators low (Fig. 1), which 
results in less oversorting due to reduced accumulation of unexpected material 
movement like in-axis-shifts and tumbling (Pfaff et al., 2015). While the concept proved 
its capabilities in plastic granule sorting, customers asked for more capabilities in 
image processing and classification. The system has been extended with GPU 
based CNN inference for classification, which we showed on the Vision fair 2022. 
Regarding the previous, fully FPGA integrated system, the camera interface was 
changed from CameraLink to CoaXPress, too.

In this contribution we measure and describe the system latency after adding a GPU 
to the image processing pipeline. Like in our last contribution (Wezstein et al., 2022) 
for SBSC we aim for highly detailed measurements. We want to get comparable 
data to our last measurements, too. Since our contribution to SBSC in 2022, the 
shortcomings of actuator control were fixed, we assess that fix, too. The desired full 
system latency (image to actuator control) is 5 ms or less.

8 Setup and methods
A complete sorting system, processing multiple objects at a time and undefined 
material is not suitable for reproducible timing analysis. The experimental setup 
from (Wezstein et al., 2022) is re-used for the new measurements. In contrast to 
our previous measurements, the side camera, oscilloscope, valve controller and 
valve are not considered here and removed. In addition, GPU-only measurements 
are carried out. With the extra data captured, we can assess the PC-system’s timing 
properties more appropriately.
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Our prototype consists of an altered version of MSTVision GmbH’s “High Speed 
Sorting” solution. The original system consists of one Basler AG frame grabber, 
whose FPGA is configured via VisualApplets, a line scan camera, an MSTVision 
Trigger Board and one or more of their Matrix 32 boards. Typically, a CameraLink 
interface and a matching monochrome line scan camera is used. (Stelzl, 2019) Our 
prototype uses a slightly different hardware configuration, see Tab. 1 for details. 
Instead of using the previously proven fast FPGA algorithms for object feature 
extraction and classification, the line scan data is merged into a 2D representation. A 
Blob analysis algorithm is used for object detection, where the objects are extracted 
and passed together with the Blob properties and the 2D representation to the host 
system’s main memory. There may be multiple objects in one transfer, depending 
on the object count in the 2D representation. The data is preprocessed on the host 
and transferred to the GPU afterwards. After the CNN inference, the results are 
transferred back to the host system. The post processing algorithm determines the 
final classification result, which is then transferred back to the FPGA. The FPGA 
handles the object timing. After the set-up time, the object is rejected, if the inferred 
class should be rejected. 

To achieve low latencies with a data loop through the host system including its 
GPU, a real-time environment is used. Real-time systems need to be a matching 
set of hardware and software, the used components are listed in Tab. 1 and Tab. 2. 
For communication and PC image processing the purposely developed MSTVision 
LowLatency Framework is used. All measurements use the same hard- and 
software configuration. The hardware components are used with optimized energy 
management parameters to lower the compute latencies.
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Fig. 1 Illustration of the effect of reducing the offset between scan line and actuator line in 
a sorting application. Overview of the system used for multiple object measurements.

Tab. 1: System hardware components.

Component Model/Configuration
Frame grabber Basler imaWorx CXP-12 Quad

Camera Teledyne e2v Eliixa Plus EV71YC4MCP1605-BA0 
(16384x1 pixels,100 kHz line frequency)

GPU Nvidia Quadro RTX 4000
CPU AMD EPYC 7551P
Mainboard Supermicro H11SSL-I Rev. 2.0
RAM 8 channels of 8 GiB DDR4-ECC-Reg 2133 MHz
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Fig. 2 System data flow model, all shown image dimensions are noted without 
our extra timing information, needed for the measurements.
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Tab. 2: System software components.

Component Model/Configuration
Operating system Debian 11 with PREEMPT_RT 5.10
GPU driver Nvidia 515.43.04
ONNXRuntime rel-1.12.1 with modifications
CUDA 11.7
CUDNN 8.4.1
TensorRT 8.4.2.4

8.1 GPU only setup
A measurement series with the GPU on its own is used to determine the latency 
baseline for the whole system. There are three different measurements:

1. Measuring the compute time for a batch size of 1 with varying pause between 
subsequent calculations. 

2. Measuring the compute time for a batch size of 1 with varying pause between 
subsequent calculations, but with latency optimizations in terms of GPU 
energy management.

3. Measuring the compute time for a varying batch size of 1 to 32 without 
unnecessary pausing between calculations. The optimizations of (2) are 
used, too.

In the Fig. 3 the measurement strategy is illustrated. For all measurements a single 
Nvidia Quadro RTX4000 GPU is used. The CNN is a grayscale modified version 
of the ShuffleNet v2 (Ma et al., 2018) provided in the ONNX format and loaded, 
optimized, and ran by Nvidia TensorRT. The measurements with varying batch sizes 
are carried out sequentially, every batch size for itself.
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Fig. 3 Strategy for GPU only measurements. The Parameter N denotes the 
used batch size, the pause step is only used for the single batch measurements 

(see Sections 2.1.1 and 2.1.2). U denotes a uniform distribution.

8.2 Experimental setup for single objects
To create experimental data for single objects, plastic balls (diameter 6 mm, mass 
0.12 g) are dropped with a dispenser. A single ball then falls through the scan line 
of the camera and is processed by our system. The line scan camera operates at 
a line frequency of 100 kHz and a line width of 16384 pixel in 8 Bit mode. The data 
is then binned to 8192 pixel width in the FPGA. The data rate for our sorting design 
is the same as in (Wezstein et al., 2022). The CNN is fed with extracted single object 
batches with a resolution of (256 x 256) pixel. The data is grayscale and because of single 
sized batches the resulting input dimension is 1x1x256x256. There is no rescaling of objects 
in the processing pipeline.
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The collected timing information comprises: 

•	 Camera trigger rising and falling edge,

•	 Camera line first and last pixel received,

•	 Object detection timestamp,

•	 Extracted image of the object with timing information,

•	 Latency of CNN inference (measured with CPU),

•	 Latency for uploading information (measured with CPU),

•	 Overall latency for “GPU-Loop” (measured with FPGA),

•	 Actuator data timestamps.

8.3 Experimental setup for multiple objects
To create experimental data for multiple objects falling simultaneously, our trade fair 
demonstration setup (Fig. 1) is used. The setup uses a vibrational feeder to feed the 
same plastic balls from the single setup. The inspection width is approximately 320 
mm. The camera resolution and line frequency are the same as in the single setup. 
We don’t use any actuator; the setup is only used to generate all relevant timing 
data. The object data for the CNN comprises multiple batch sizes (N) and the resulting input 
dimension is Nx1x256x256. The image data and the measured latencies are written to 
an SSD array while the machine is running. The captured data comprises the same 
measurements as the single setup.

9 Results
In this chapter we explain and analyse the results of our measurements. The 
first section “GPU-Only Setup” covers baseline latencies for our CNN. With the 
expectations of these measurements, the measurements with single objects are 
evaluated. With the multi object measurements, we cover the latency effects for a 
higher system load.
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9.1 GPU only setup
The following graphs show the results of the GPU measurements. The two 
measurements with varying pause times (Fig. 4, Fig. 5) show a clear latency jump 
after a pause of about 15 seconds. For the calculation of simple statistics, the data is 
divided into two parts: latencies for periods <= 14 seconds and latencies for periods 
>= 16 seconds. See Tab. 3 for a summary. We observed these latency jumps in 
previous measurements. Therefore, we started a thread at Nvidia’s forums (Nvidia, 
2023), but until today they didn’t provide a detailed answer on that.

Our optimizations reduce the maximum latency of 25.3 ms to 5.5 ms. For values 
with pauses <= 14 s, the maximum latency reduces from 1.8 ms to 1.6 ms. For small 
pauses, the gain is only ca. 200 µs, but the coefficient of variation decreases from 
8.7% to 2.0%.

The multi-batch size measurement, see Fig. 6, shows nearly linear latency increases 
for batch size increases. Batch size 1 is an exception. We don’t know yet, why 
a value of 1 has 1.24 ms ± 1.2% while a value of 2 leads to 0.828 ms ± 0.39%, 
which means ca. 1.5 times more latency for calculating half the amount of data. 
We excluded it for the linear fit shown in the figure. We suspect PCIe transmission 
optimization of the system firmware or something similar in the GPU firmware to be 
the cause. Considering the intercept value of 395 µs, we estimate it to be the costs 
for controlling the data transfers and the control of the GPU by the host. The slope 
of 185 µs is considered as the costs for the inference and the raw data transfer.

Tab. 3: CNN processing timings for GPU-only, single batch measurements. All values except COV 
and Count in milliseconds, COV is the coefficient of variation and Count the sample count.

Mean COV Min Max Count
Non-Optimized, 
Period <= 14 s 1.474 8.66% 1.352 1.796 7810

Non-Optimized, 
Period >= 16 s 15.12 23.0% 1.842 25.30 5022

Optimized, Period 
<= 14 s 1.297 2.04% 1.242 1.569 7509

Optimized, Period 
>= 16 s 1.823 12.2% 1.704 5.508 4823
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Fig. 4 Scatter plot of the non-optimized single batch latencies 
with varying period times between inferences.

Fig. 5 Scatter plot of the optimized single batch latencies with varying pause times between inferences.
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Fig. 6 Error bars of the multi-batch measurements. The linear fit is without .

9.2 Experimental setup for single objects
For the single experiment setup 1400 plastic balls were processed in 5 measurement 
series. For all timing values, the first object was removed from the series, because 
the first CNN inference was extremely long due to internal optimizations.

9.2.1 Image acquisition timings
The camera operates at 100 kHz line frequency and has a line width of 16384 
pixels configured with 8 Bit depth. For triggering the CXP interface is used, the 
trigger signal and width are generated by the FPGA. The width controls the sensor 
integration time, and the frequency controls the line frequency. As the camera 
operates with 4 CXP links at 6 Gbit/s, we expect a theoretical maximum bandwidth 
of 3 GB/s. For a line of 16 KiB of data, the theoretical minimum transfer time is 5.46 
µs. The expected transfer period is the same as the trigger: 10 µs. The “Trigger to 
full transfer” time describes the time from trigger start to receiving the last pixel of a 
line. It is the sum of trigger period, transfer delay and transfer period. The measured 
values (Tab. 4) are within expectation.
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Tab. 4: Camera timing, all values, except Count, in µs. The sample count is denoted as Count. *) 
Some standard deviations are smaller than one FPGA clock period (3.2 ns), therefore a continuous 

uniform distribution of one cycle period was used, leading to a standard deviation of 0.924 ns.

Expected Mean Std*

Trig. period 10.0 10.0 0 9171718

Trig. width 4.0 4.0 0 9171958

Transfer delay - 55.2 18.15e-3 9171958

Transfer time 5.46 7.41 4.58e-3 9171958

Transfer period 10.0 10.0 20.42e-3 9171718

Trigger to full 
transfer 66.6 66.6 18.44e-3 9171958

9.2.2 Object detection and extraction timings
A “first in first out” buffering like mechanism is used to form a 2D representation 
from the line scan data. The buffer’s height is 256 lines. Due to the nature of line 
accumulation, the expected latency for detection and extraction is approximately 
256 lines multiplied by the line period of 10 µs. 

The measurements (Tab. 5), except the extraction time, show a uniform distribution 
(Fig. 7) with an interval width of 2552 µs, which is near our expected, static latency. 
The root cause for this behaviour lies in the Blob analysis of VisualApplets: as soon 
as an object is scanned, the data is output and processed by our design (Basler AG 
,2023). This jitter was initially not taken into account. The extraction time, with a 
value of 41.6 µs ± 0.7 µs for one object, is negligible in terms of latency and jitter.
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Tab. 5: Object detection and extraction timings, all values in µs. The sample count is 1395 for each value.

Expected Mean Std Min Max
Delay: Last pixel 
to detection 2560 1319.2 730.7 23.1 2574.7

Delay: Last pixel 
to extraction 2560 1326.5 730.8 28.5 2588.9

Extraction time - 41.6 0.732 39.6 43.8

Fig. 7 Histogram of the latencies between last object pixel occurrence in 
the raw data stream and the detection, steps 1 to 4 in Fig. 2.

9.2.3 CNN processing timings
The expected latency for the CNN inference is ca. 1.3 ms, as measured in the 
GPU-only measurements. For preprocessing, postprocessing and data transfer, 
we expect lower latencies, because of the simple operations needed and highly 
optimized communication paths. The class response is communicated via PCI-
Express port IO. Due to its directly CPU bound operation, we can measure it directly.

The measurement values, shown in Tab. 6, show higher values for CNN inference 
than expected. The root cause of this may lay in thread management as the used 
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inference library creates its own thread pool. The high maximum values for the other 
operations may be thread blocking issues or additional latencies originating from the 
used non-uniform memory access (NUMA) architecture.

Tab. 6: CNN processing timings, all values in µs. The sample count is 1395 for each value.

Expected Mean Std Min Max

Preprocessing - 67.0 19.0 47.5 495.5

CNN Inference 1.3 1685.2 231.9 1434.0 3193.0

Postprocessing - 10.7 10.7 7.2 33.9

Answer telegram - 115.1 115.1 97.2 237.9

9.2.4 Actuator control timing
Actuators are controlled with a polling algorithm, running at a frequency of 3.125 
kHz. The internal time base has a resolution of 0.1 ms. We set our system to a 
delay time of 10 ms. We expect the timing from object occurrence, step 1 in Fig. 2, 
to actuator control, step 12 in Fig. 2, to be a uniform distribution in the range of [10 
ms, 10.32 ms].

Our measurements (Tab. 7) show a high standard deviation of 739.5 µs and a value 
span of 2862 µs for the delay time of the actuator control. To find the root cause, the 
delay between object detection and actuator control was measured, too. There the 
standard deviation is an order of magnitude lower (95.9 µs), and the value span is 
391 µs, nearly as expected. We expect the sampling of the object occurrence time 
stamp as the root cause. It seems that the creation of the 2D representation passes 
its latency distribution (see Section 3.2.2) to the object detection, too. Initially we 
expected it just to add constant latency, which would not be a problem, as this can 
be calibrated. In Figs. 8a and 8b, the histograms of the two-value series are shown. 
They confirm the assumed uniform distribution.
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Tab. 7: Actuator control timings, all values in µs. “U” denotes a continuous 
uniform distribution. The sample count is 1389 for each value.

Expected Mean Std Min Max
Object to 
actuator

U(10 ms, 
10.32 ms) 10.5e3 739.5 9.03e3 11.9e3

Detection to 
actuator <10.0e3 9.17e3 95.9 8.97e3 9.36e3

Fig. 8 Comparing the actuator timing value distributions, steps 1 to 12 in Fig. 2. Part a 
shows the delay time between the last object pixel acquired and the start of the actuator 

signal, part b shows the delay time from the object detection to the actuator signal.
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9.2.5 Full round-trip timings
A full round-trip is the complete time needed for one object to get processed by the 
system, measured between the last object pixel acquired and the end of the reply 
telegram of the PC. In addition, we measure the time for the system to process one 
extracted object and the time for the PC operations to complete. The difference 
between these values suggests that the latencies are caused by direct memory 
access (DMA) and thread communication.

All measurements (Tab. 8) show high standard deviations. The histogram for the 
measurement “Sum of PC latencies”, Fig. 9, shows a distribution typical for real 
time dropouts, while the histogram for the full round trip (Fig. 10) looks more like a 
uniform distribution. The problem found in Section 3.2.2 dominates the jitter of our 
system, limiting it to a minimal practical useable delay setpoint of 6 ms. The second 
highest impact for system performance is the high value span (1.95 ms) of the PC 
operations. 

Tab. 8: Full round-trip timings, all values in µs. The sample count is 1395 for each value.

Expected Mean Std Min Max
Object extraction 
to answer ca. 2e3 2063.8 269.1 1771.7 3851.2

Sum of PC 
latencies <2e3 1878.1 248.1 1601.1 3551.5

Full round trip ca. 3.3e3 3431.9 791.4 1877.4 5895.7
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Fig. 9 Histogram of the latencies of the PC based operations, 
steps 8 to 11 in Fig. 2. The sample count is 1395.

Fig. 10 Histogram of the full round-trip latencies, steps 1 to 11/12 in Fig. 2. The sample count is 1395.
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9.3 Experimental setup for multiple objects
For the experimental measurements of multiple objects 259621 object batches were 
processed. The batch size varies between 1 and 17. The period time, which is the 
time between the last encountered batch on the PC and the current batch is used to 
filter the data. Only data in the 99% quantile of the period time is considered. To get 
an acceptable number of samples, our data set is reduced to batch sizes between 
1 and 10. The sample count for the batch sizes are: 1; 182631, 2; 50934, 3; 13907, 
4; 4941, 5; 2279, 6; 1225, 7; 575, 8; 300, 9; 128, 10; 57." ⟶ "1) 182631; 2) 50934; 
3) 13907; 4) 4941; 5) 2279; 6) 1225; 7) 575; 8) 300; 9) 128; 10) 57.

The object extraction measurements (Fig.11) show a nearly linear increase of the 
latency when the batch size is increased, as we expected it. We can’t explain the 
cause of the outliers, it may lie in the memory management of the FPGA. The sum 
of the PC latencies (Fig. 12) increases with the batch size. Considering the median 
values of the box plot, the increase seems to be mostly linear. There are high latency 
outliers, too. They are higher than the measured maximum latency, measured in 
Section 3.2.5. This may originate from the higher batch frequency in the more 
realistic scenario tested here. To investigate this, Fig. 13 shows a 2D histogram of 
the latencies between object extraction and the answer of the inferred class. It’s the 
overall latency for the host actions measured in the FPGA. The histogram shows a 
jump in latency, for the shortest displayed histogram bin (2.1 ms to 3.5 ms) with an 
outlier of 10.4 ms. For longer period times, the outliers are not as high, but too high 
for the targeted 5 ms overall latency. In Fig. 14 the difference between the values 
shown in Fig. 13 and Fig. 12 (only batch size 1) is shown. We expected a nearly 
constant value for this, as measured in Section 3.2.5, of around 200 µs to 300 µs. 
This is the case for lower frequencies. For higher frequencies, the value explodes. 
It seems that most of the frequency-based latency increase originates from the 
communication between the modules, which we didn’t measure. There are multiple 
threads communicating with others, the first approach should therefore be the 
optimization of thread priorities and scheduling, as already stated in Section 3.2.3.
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Fig. 11 Latencies for the extraction of objects from the 2D representation, step 5 in Fig. 2.

Fig. 12 All measured latencies of the host system combined, step 8 to 11 in Fig. 2.
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Fig. 13 2D histogram of the round-trip latency depending on period time in multi object 
measurements. Only data with a batch size of 1 is considered. The latency is measured 

between object extraction and the answer from the host, step 5 to 11/12 in Fig. 2.

Fig. 14 Histogram of the differences between FPGA and PC latency measurements depending 
on period time in multi object measurements. Only data with a batch size of 1 is considered.
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10  Conclusion
With our measurements, we gained access to interesting and helpful timing insights. 
While the GPU inference has relatively stable timings (1297 µs ± 2.04%) when run 
alone, the inference (step 9 in Fig. 2) has high timing variance and a higher mean 
latency (1685 µs ± 13.8%) when used with our software framework. The other PC 
processing operations have high jitter values, too. Changing the camera interface 
to CoaXPress while doubling the data throughput has no practical negative impacts, 
the transfer delay rises from 27.5 µs ± 7 ns to 55.2 µs ±.18 ns while the transfer 
time reduces from 9.64 µs ± 4 ns to 7.41 µs ± 5 ns. Acquisition latencies and jitters 
increased, but they are still far from being a problem in our application.

Our main jitter contributor is the creation of the 2D representation of the line scan 
data (step 2 in Fig. 2). Its measured jitter is 2552 µs, which is 64% of our complete 
system jitter of 4018 µs. Our second important jitter contributor is the PC processing 
pipeline (step 8 to 11 in Fig. 2) with 1950 µs. The mean latency from object extraction 
to class answer (step 5 to 11/12 in Fig. 2) is 2064 µs, a value considered as good 
from our point of view.

The measurements show that it is possible to reach low latencies which are usable 
for sorting of objects in free fall. The problems with the actuator control are fixed by 
higher poll rates.

For the multi object experiments, we observe a nearly linear increase in object 
extraction and PC latencies, but extreme outliers for the PC latencies. It seems, that 
for higher frequencies, a currently unknown source of latencies increases latency. 
We suspect non optimal thread priority settings. This needs to be investigated 
further.

In our future work, we seek to minimize the jitter in the PC processing path. Possibly 
thread scheduler optimizations can reduce the latency and jitter there. The FPGA 
design needs to be improved in memory management, eliminating its extreme jitter. 
Together with improved time stamp generation, the system reaches good timing 
stability and the targeted 5 ms overall latency.
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Abstract
In sensor-based sorting systems, there is usually a time delay between the detection 
and separation of the material stream. This delay is required for the sensor data to 
be processed, i.e., to identify the objects that should be ejected. In this blind phase, 
the material stream continues to move. 

In most current systems, homogeneous movement for all objects is assumed, and 
actuation is timed accordingly. However, in many cases, this assumption does not 
hold true, for example, when unknown, foreign materials are present that have 
varying density and shapes, leading to inaccurate activation of the separation 
actuators and in turn lower sorting quality. Minimizing the blind phase by reducing 
the distance between the sensor and the actor is limited by the processing time of 
the detection process and may lead to interference between actuation and sensing. 
In this work, we address these issues by using an event-based camera placed 
between the sensor and actuator stages to track objects during the blind phase 
with minimal latency and small temporal increments between tracking steps. In our 
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proposed setup, the event-based camera is used exclusively for tracking, while an 
RGB line-scan camera is used for classification. We propose and evaluate several 
approaches to combine the information of the two cameras. We benchmark our 
approach against the traditional method of using a fixed temporal offset by comparing 
simulated valve activation. Our method shows a drastic improvement in accuracy for 
our example application, improving the percentage of correctly deflected objects to 
99.2% compared to 78.57% without tracking.

1 Introduction
Sensor-based sorting is a process that separates a material stream into two or 
more fractions based on data acquired by one or multiple sensors. It involves a 
series of steps, including material transport, sensor examination, and single particle 
separation. A typical sensor-based sorting system that uses a line-scan camera as a 
sensor and a pneumatic valve array for separation is shown in Figure 1. We refer 
to the fraction of the material which is to be deflected as residue and the fraction 
that should pass as product.

The applications of sensor-based sorting are extensive and continue to expand. It 
is widely used in recycling facilities to sort various types of waste materials. For 
example, construction waste is sorted to recover valuable metals, clay brick, and 
concrete. Furthermore, household waste is sorted to recover polymers such as 
polyethylene (PE), which is commonly found in packaging. By efficiently separating 
recyclable materials from the waste stream, sensor-based sorting contributes to 
higher recycling rates and reduces the environmental impact of waste disposal. 
In addition, sensor-based sorting finds applications in industries such as mining, 
food processing, and pharmaceuticals. In mining operations, it is used to separate 
valuable ores from gangue or waste materials, leading to increased resource 
efficiency. In the food processing industry, sensor-based sorting helps to remove 
impurities and foreign bodies from food products, thus ensuring safe and high-
quality food production. In the pharmaceutical industry, it can be used for quality 
control and the separation of different pharmaceutical ingredients.
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Fig. 1: Left: widely used sorting system with chute and single line-scan camera. 
Right: Proposed system with additional event-based camera for tracking.

For many of these applications, the high purity of the sorted fractions is crucial. 
Especially recycling applications further require a high throughput, as the material is 
often of low value. These two goals are usually conflicting (Gülcan & Gülsoy, 2017). 
There are two main causes for sorting errors. The first constitutes misclassification 
of objects. For example, a foreign object may be classified as product and is 
therefore not removed. These errors can be mitigated by gathering more data or 
employing more complex and refined classifiers. The second cause is the physical 
separation process of the material. A particle may have been classified correctly as 
residue, but is not deflected correctly. One reason for these errors is the necessary 
temporal delay between sensor examination and separation, as sensor data needs 
to be processed to calculate the separation actuation. This area is depicted in 
Figure 1 and is typically called the blind phase. To activate the actors, an assumption 
for the movement of the object during the blind phase is used. However, the actual 
particle movement remains unknown and may deviate significantly from the motion 
assumption, especially for unknown foreign objects and low-density objects that 
can be diverted by air turbulence near the pneumatic valve arrays. This unknown 
particle movement can result in incorrect activation of the pneumatic valve arrays.

To address this issue, we propose the use of event-based tracking, which combines 
a line-scan sensor for classification with an event-based sensor for tracking. We 
propose three methods for sensor fusion and evaluate them in terms of accuracy 
and computational cost. Furthermore, we benchmark these results against baseline 
methods.
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2 Related Work
Significant research has been conducted on object tracking using frame-based area-
scan cameras for sensor-based sorting (Maier et al., 2016, 2021). This approach has 
shown promising results in improving sorting accuracy, particularly for challenging 
scenarios such as spherical objects or material transport using a chute. However, 
this approach still has limitations, including temporal latency due to frame-based 
object detection, as well as limitations imposed by frame rate and motion blur, 
especially for high object velocities. Currently, RGB frame-based cameras are used 
for classification and tracking, limiting classification to color, shape and texture 
features and lacking hyperspectral data that can be captured using specialized line-
scan cameras. Hyperspectral data is however crucial for material specific sorting 
such as different types of polymers. In our approach we propose a combination 
of an event-based camera and a line-scan camera, enabling hyperspectral image 
acquisition.

In recent years, significant advances have been made in the development of event-
based cameras (Lichtsteiner et al., 2008) These cameras differ from frame-based 
cameras by capturing changes in the scene rather than capturing frames at fixed 
time intervals. Due to their remarkable properties, such as low latency, high 
dynamic range, and low power consumption, event-based cameras have garnered 
considerable attention in fields such as autonomous driving, drones, and tracking 
tasks (Gallego et al., 2022).

In the context of sensor-based sorting, an event-based camera for tracking and 
classification tasks has been proposed (Beck et al., 2021). However, the authors focus 
was mainly on classification based on texture features and motion, and only single-
object tracking was considered.

Various methods have been proposed for event-based tracking. Some methods 
employ event-by-event approaches (Delbruck & Lang, 2013; Drazen et al., 2011)
while others utilize the tracking of event-clusters (Barranco et al., 2018). Single-
event methods provide excellent temporal resolution, while cluster-based methods 
offer benefits in terms of computational cost.

Fusion of event-based sensors with frame-based cameras has been extensively 
explored for both temporal (Pan et al., 2022; Scheerlinck et al., 2019) and spatial 
(Jing et al., 2021) super resolution. Furthermore, a stereo setup of frame and event-
based cameras has been proposed for 3D vision (Wang et al., 2021; Zuo et al., 
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2021). However, to our knowledge, the combination of line-scan and event-based 
cameras has not yet been investigated.

3 Experimental Setup
For this work, a sensor-based sorting setup was conceptualized and built. The task 
of separating clay brick from limestone was selected as an example sorting task. 
The required sensors were implemented and synchronized. The data was then 
analyzed offline.

3.1 System Setup
The experimental setup used in this work is shown in Figure 2. The sorting system 
consists of several components:

•	 Material Feeding: The material is fed into the system using a vibrational 
feeder. The feeder has adjustable settings to control the throughput of the 
material.

•	 Material Transportation: The material is transported through a chute. 
The chute was chosen over a conveyor belt to create more variation in the 
trajectories of the objects. Furthermore, a chute is often preferred in the 
industry due to its lower maintenance requirements and easier material 
handling. The chute’s width is 14 cm.

•	 Sensor Examination: Immediately after discharge from the chute, the 
material undergoes a sensor examination using both a line-scan and an 
event-based camera. The line-scan camera used is Jai 3-CMOS SW- 
4000T-10GE, which provides detailed color information. The event-based 
camera used is DAVIS 346 with a resolution of 346 x 260 pixels. The line-
scan camera and the event-based camera are positioned roughly parallel to 
each other to avoid the parallax effect. The event-based camera captures 
the field of view from the chute to the funnels.

•	 Valve Array: The valve array is responsible for deflecting the material either 
into the funnel marked in red or allowing it to continue into the funnel marked 
in green. In this work, the deflection of the material is not implemented in the 
hardware setup.
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The two cameras are synchronized using the trigger output of the line-scan camera. 
For every captured line, the line-scan camera sends a trigger to the event-based 
camera. The timestamp of this trigger is saved in the event data, allowing each 
captured image line to be referenced within the event stream.

Fig. 2: Experimental hardware setup.

3.2 Sorting Task
The material used in the sorting experiment consists of two fractions: Limestone and 
clay brick (as shown in Figure 3). The material composition is approximately one-
third clay brick and two-thirds limestone. Our method focuses solely on improving 
the material separation step, not the classification task. Hence, a task with an easy 
material distinction based on color was deliberately chosen. It can therefore be 
assumed that sorting errors occur only due to errors in tracking or matching between 
line-scan and event-based cameras.
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Fig. 3: Sorting material containing limestone and clay brick.

4 Methods
Our goal is to use the line-scan camera with its high spatial resolution for the 
characterization (classification) of the material and the event-based camera with its 
high temporal resolution at low data rates for the tracking task is enhanced, leading 
to better physical separation. When the system, based on the data of the line-scan 
camera, classifies an object as residue, the event-based camera comes into play 
for tracking. This camera tracks objects detected by the line-scan camera all the 
way to the pneumatic valve array. It determines how the object should be deflected 
by activating the appropriate valve at the precise time. This way, we are able to 
accurately identify and deflect objects in our system, ensuring efficient control and 
redirection.

4.1 Classification
The classification process begins by accumulating 48 acquired lines from the line-
scan camera into an accumulated image. This accumulation is done in order to 
perform classification on full objects at once. However, to mitigate issues that 
arise when an object is located on the borders of the image, the previous image is 
appended to the current image. This accumulation process is illustrated in Figure 4.



96

Sensor-Based Sorting & Control 2024

Fig. 4: Image accumulation process.

The classification steps are further detailed in Figure 5. The process involves 
background segmentation, connected component analysis, masking, and color 
classification.

The classification itself is done by applying a simple thresholding technique to the 
relative red value in the RGB color space according to

with cr, cg, cb being the sum over all pixels inside the bounding box for the respective 
color channels. The threshold thr has been determined experimentally.

Fig. 5: Classification steps. a) camera image; b) background segmentation 
& connected component analysis; c) masking & classification

class ∶=
𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟

𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔 + 𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏
> thr 

with cr, cg, cb being the sum over all pixels inside the bounding box for the re-

spective color channels. The threshold thr has been determined experimen-

tally. 

 

Fig. 4: Classification steps. a) camera image; b) background segmentation & con-

nected component analysis; c) masking & classification 

4.2 Tracking 
In our work, we build upon the cluster-based tracking approach proposed 

in (Barranco et al., 2018). This approach employs the mean-shift clustering 

algorithm combined with a Kalman filter to enable multi-object tracking in an 

event stream. The algorithm operates by considering events over time as a 

set of points and grouping close events to clusters with preliminary mean val-

ues. Using a multivariate Gaussian Kernel for weighting the distances to all 

mean values, neighboring clusters are merged iteratively, thus representing 

separate recorded objects. 

Processing each event separately during clustering and prioritizing events 

with recent timestamps using a weight function allows for an accurate detec-

tion of object positions. Every time step, the Kalman filter is then used to es-

timate the object position at the next time step, initializing the next cluster by 

assigning it the events within a region around this position. A constant-veloc-

ity-model, updating only the positions, allows for an efficient estimation, thus 

enabling the use of a short time interval for each tracking step.  
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4.2 Tracking
In our work, we build upon the cluster-based tracking approach proposed in (Barranco 
et al., 2018). This approach employs the mean-shift clustering algorithm combined 
with a Kalman filter to enable multi-object tracking in an event stream. The algorithm 
operates by considering events over time as a set of points and grouping close 
events to clusters with preliminary mean values. Using a multivariate Gaussian 
Kernel for weighting the distances to all mean values, neighboring clusters are 
merged iteratively, thus representing separate recorded objects.

Processing each event separately during clustering and prioritizing events with 
recent timestamps using a weight function allows for an accurate detection of object 
positions. Every time step, the Kalman filter is then used to estimate the object 
position at the next time step, initializing the next cluster by assigning it the events 
within a region around this position. A constant-velocity-model, updating only the 
positions, allows for an efficient estimation, thus enabling the use of a short time 
interval for each tracking step. 

We have chosen the cluster-based approach over single-event tracking methods 
for several reasons. Although using event clusters introduces slightly larger time-
windows between tracking steps, which can make correspondence between frames 
difficult, we can leverage known motion assumptions in our specific use-case to 
mitigate this effect. Moreover, fewer tracking steps contribute to improved overall 
speed. 

Furthermore, we have expanded upon the approach proposed in (Barranco et al., 
2018) by introducing additional modifications. For instance, when events are situated 
within the regions of two objects, they are assigned lower weights to minimize the 
risk of merging two separate objects.

To facilitate comparison, we also incorporated two baseline methods. The first 
method involves no tracking or event-based camera and relies solely on the line-
scan camera and motion assumptions to activate the valves. The second method 
tracks the objects for a certain duration, but then predicts valve activation well 
in advance, highlighting the advantage of tracking objects until they are near the 
pneumatic valve array.
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4.3 Sensor Fusion Methods
Merging the classification results from the line-scan camera with the event- 
based camera poses a significant challenge in our system. This problem can be 
considered as a correspondence problem, as illustrated in Figure 6. While the 
line-scan camera and event-based camera are aligned through calibration using a 
linear transformation, the time difference between object classification and event 
detection introduces challenges. As time passes, the object moves, resulting in 
the corresponding event cluster being located at a different position. This challenge 
becomes more difficult as the time for classification increases and more objects are 
involved.

To address this correspondence problem, we have developed three approaches, 
each with its own characteristics and advantages. Figure 7 provides a visual 
representation of the differences between these methods.

4.3.1 Linear Assignment
This approach assumes linear movement during classification time. The position of 
the object detected at a specific time is extrapolated to the current time. Tracking 
is then initialized with events within a certain radius (also detected using the line-
scan camera) around this extrapolated position. However, this approach still faces 
challenges similar to the original correspondence problem.

  

Fig. 6: Illustration of the correspondence problem. Left: Event-based camera view. 
The shown events are at time tn+k which is the time when the classification result is 

available. Right: Line-scan image at time tn, which is used for classification.
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Fig. 7: Three variants for solving the correspondence problem between line- scanning sensor 
and event-based tracking. a) Linear Assignment; b) Backtracking; c) Event Clustering.

4.3.2 Event Clustering
In this method, new objects are identified using mean-shift clustering in the event 
stream prior to each tracking step. Initially, these objects are unclassified. The 
classification is performed separately using the line-scan camera. The trajectories 
of the unclassified objects are stored, and once a classification becomes available, 
it is assigned to the next unclassified object based on Euclidean distance and 
time of detection. By incorporating system knowledge, such as considering only 
unassigned events and searching for new objects only at the drop-off edge, the 
clustering process can be simplified and accelerated.

4.3.3 Backtracking
Tracking is initiated when an object is detected, providing information on its position, 
radius, and detection time. Old events are buffered for a specific duration and 
the tracking is initialized with the events in the buffer at the time of detection. The 
tracking therefore starts in the past and needs to be significantly faster than real-
time to catch up before the objects reach the pneumatic valve array. This can be 
achieved by focusing the tracking only on the objects that have to be deflected. 
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We refer to the phase of catching up to the current object position as backtracking 
phase. In contrast to the method Event Clustering, tracking is only initialized when an 
object is detected. All events outside these detected objects are implicitly ignored. 
A drawback of this approach is the handling of collisions during the backtracking 
phase. Since tracking is asynchronous for each object, neighboring objects cannot 
be accounted for. Therefore, the method of assigning lower weights in overlapping 
zones, as presented in Section 4.2, cannot be applied.

5 Results and Analysis
The evaluation of our approach is performed offline using the captured event stream 
from the event-based camera and the images of the line-scan camera. This approach 
allows for repeatability and easier prototyping since the algorithms do not have to 
run in real-time initially. The tracking methods used in the evaluation calculate virtual 
valve activation. For validation, ground truth trajectories have to be acquired in 
order to test the proposed tracking methods against them. For acquiring the ground-
truth, we used a high-frequency frame reconstruction based on the event data on 
which we performed a frame-based tracking method. All methods were implemented 
and tested using a pseudo real-time simulation. This simulation allows testing the 
methods in real-time conditions based on the captured data. This has the benefit of 
repeatability and the option of slowing down time for development purposes. The 
methods were compared in terms of accuracy and computational cost.

5.1 Ground Truth Generation
Acquiring ground truth trajectories for all objects is a prerequisite for this evaluation 
method. Since the real object trajectories are unknown, we used an alternative 
method to acquire them. Specifically, we employed a conventional tracking approach 
based on high frequency frame reconstruction from the event stream. In addition, 
the estimated trajectories were manually refined to ensure precision. For ground 
truth generation, we initially tested : the described “recurrent, fully convolutional 
network” architecture from (Rebecq et al., 2019), However, in our controlled scene, 
we found that this model was outperformed by a rule-based reconstruction method, 
employed in the dv-vision toolbox (DV · Dynamic Vision System, o. J.), where a 
more detailed fine-tuning of parameters to match our controlled scene was possible.
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For each object, we determined the position and timestamp of the crossing point with 
the pneumatic valve array line using the ground-truth trajectories. We defined an 
object as deflected if an air nozzle with its center within the object’s radius was 
activated at the exact timestamp. This activation is illustrated in Figure 8. The object 
is counted as deflected if at the time it reaches the center of the nozzle array either 
valve b or c are opened, since the centers of the air nozzles are within the radius 
of the object. Activation of valve a would not suffice for a deflection. All methods 
initially calculate the valve activation based on the predicted crossing point with the 
valve array. The duration of valve activation was set to 7.2 ms for all methods, with 
the valve opening 3.6 ms before the estimated crossing point and closing 3.6 ms 
after the crossing point.

Fig. 8: Virtual valve activation.

5.2 Accuracy of Valve activation
We compared the methods at two different throughputs, specifically 10 g/s and 
20 g/s. For each throughput, approximately 60 s of data was captured, resulting 
in roughly 1300 objects for low throughput and 2800 objects for high throughput. 
We have defined the clay brick, which constitutes about one third of the total material, 
as residue. Table 1 presents a comparison of the false positive and false negative 
rates for the different methods and throughputs, including the baseline (BL) methods 
that used no or limited tracking.

The results demonstrate that the tracking methods significantly outperforms the 
method that relied solely on a line-scan camera. For the line-scan camera, due to the 
lower accuracy, a method with an extended temporal and spatial activation window 
was implemented. This improves false negative rate FN but also results in higher 
false positive rate FP rates. In a physical system, this larger window would further 
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require more compressed air and therefore increase operating costs. Furthermore, 
the methods that aim to track objects as far as possible exhibited better performance 
compared to the predictive tracking. This finding suggests that the trajectories of 
objects still undergo changes close to the nozzle array.

As expected, all methods experience a decrease in performance with higher 
throughput. However, it is worth noting that all methods suffer by similar relative 
amounts. The reasons for the lower performance can be attributed to a higher 
number of collisions, as well as more challenging correspondence problems. Overall, 
the method employing Event Clustering performs best. However, for this analysis, 
the real-time constraints were relaxed, which benefits this method as it is the 
computationally most expensive.

5.3 Computational Cost
A very important aspect for the suitability of the different methods is the real-time 
capability. Figure 9 shows a boxplot of the computation times for a single tracking 
step. The methods were implemented on an off-the-shelf notebook with 8 GB RAM 
and AMD Ryzen 3 5300U-Processor. The target tracking step size is 1.8 ms.

Tab. 1: Error-rates for different methods at high and low throughput. 
Tracking methods outperform the baseline.

Method Throughput FN FP

BL Line only 10 g/s 38.02 % 2.41 %
BL Line only, ext. act. 10 g/s 21.43 % 3.61 %
BL Extrapolation 10 g/s 10.00 % 1.20 %
Linear Assignment 10 g/s 2.00 % 1.38 %
Event Clustering 10 g/s 0.76 % 1.34 %
Backtracking 10 g/s 1.22 % 1.60 %
BL Line only 20 g/s 48.56 % 3.06 %
BL Line only, ext. act. 20 g/s 28.42 % 7.22 %
BL Extrapolation 20 g/s 11.11 % 4.62 %
Linear Assignment 20 g/s 2.58 % 3.65 %
Event Clustering 20 g/s 1.58 % 4.23 %
Backtracking 20 g/s 1.74 % 4.18 %
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Since the computational effort required for the tracking depends on the number 
of objects and event rate in the scene, the computation times vary strongly. Several 
algorithms have been implemented, such as increasing the step size, ignoring 
events, or terminating the tracking in advance, to ensure real-time capability even 
with temporarily high loads. The methods of Linear Assignment and Backtracking 
point have shown to be significantly faster than the Event Clustering approach. The 
reason for this is that they do not need to perform object detection based on the event 
stream as they utilize the line-scan camera. Therefore, the costly clustering algorithm 
does not have to be performed. Especially for larger sorting systems with higher 
throughput, the factor of computational cost is increasingly crucial.

Fig. 9: Boxplot comparison of the three methods. Shown are median (orange), mean (dotted green), 
as well as 25-75% (gray box), 1-99% (black whisker) and 0.1-99.9% (gray whisker) quantiles.
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6 Conclusion and Future Work
In this work, we proposed combining a line-scan and an event-based camera for 
sensor-based sorting. We believe that these two sensors complement each other 
ideally. The event-based camera gives high temporal resolution at the cost of a lack 
of overall intensity information, making it ideal for tracking tasks, but very limited 
in classification of objects. The line-scan camera excels at capturing intensity 
information both in spatial, as (in the case of hyperspectral cameras) in spectral 
domains. These cameras are therefore especially suitable for classification tasks, 
as they can distinguish between materials based on appearance. We implemented 
and evaluated three different methods for combining the two camera systems. 
The following key findings emerged. All tracking methods significantly improved 
accuracy compared to baselines. Event Clustering exhibited the highest accuracy, 
but was the slowest method. The Linear Assignment method performed worst in 
terms of accuracy, as it still relies on the assumption of linear object movement. The 
Backtracking method performed slightly worse than the Event Clustering approach. 
This is due to faulty correspondence/assignment and the discarding of collisions 
during backtracking steps. Both of  these error types are largely due to the inlier 
estimation attributing all events inside a radius to an object. Therefore, objects that 
are close together may merge to a single object in some cases.

These errors could be mitigated by employing more precise inlier estimation using 
object boundaries. For the Event Clustering method, errors were also attributed to 
incorrect object identification/initialization due to the clustering approach, which is 
sensitive to fine-tuned parameters such as expected object size. In addition to these 
specific errors, there were general challenges observed. Some objects were lost 
during tracking, suggesting the need for smaller time intervals. Collisions between 
objects remained difficult to handle effectively. 

It is worth mentioning that the overall high error rates are primarily due to intentionally 
long blind phases and maximum object movement in the experimental setup. 
However, in many cases, such as herb-sorting, great effort is taken to create object 
movement, which is as uniform as possible. Using tracking approaches, these cost 
intensive measures could be discarded, since object movement is allowed to be non-
uniform. Further, the event-based camera allows for much higher object speeds and 
therefore throughput than a frame-based camera.
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Moving forward, we aim to test the methods on different materials, such as polymer 
flakes or herbs, as they could potentially yield even more significant improvements 
for these materials. We also plan to use a hyperspectral line-scan camera to enable 
material specific sorting along with tracking. Future development efforts will include 
implementing a fully working real-time sorting system using these methods. This 
would not only facilitate better comparability with existing approaches but also serve 
as a practical application of the research findings.
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Abstract
The recycling industry is preparing for 2025: it will become mandatory to separately 
collect textiles taking the first step towards a closed loop recycling system. With this 
new material flow the recycling-industry will face new challenges. Indicative tests 
show that quantitative textile-analysis regarding material composition is feasible 
based on NIR-technology. However, depending on the properties of the textiles 
(e.g., material composition or structure) and how they are presented to an optical 
sensor, textile detection can be affected significantly. Thereby constraints in future 
sorting and analysis tasks can be predicted. Spectral analysis of CO/PET-Textiles 
were conducted and analyzed regarding the effect of textile characteristics on false 
color analysis.
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1 Introduction – Development of textile recycling industry 
Nowadays textile recycling is a niche market, as most textiles (73 wt%) are landfilled 
or incinerated worldwide (Ellen MacArthur Foundation, 2017). The European Union 
aims at changing this. Heading towards a circular economy for textiles, the European 
Commission wants to enforce separate collection, sorting, re-use, and recycling. 
Part of this approach is harmonization of extended producer responsibility (EPR) 
schemes for textiles in all EU member states. This will be tackled through a targeted 
amendment of the Waste Framework Directive in the EU (European Commission, 
2023). Furthermore, a stop of textile export outside the EU is planned, resulting in 
additional 1.5 Mio. Mg/a of textiles to be treated in the EU (European Environment 
Agency, 2023).  

Of 12 kg textiles produced per capita in the EU, only 22 wt% (of post-consumer textile 
waste) is collected separately (European Commission, 2023). The existing collection 
systems across Europe leading to collection-rates which differ from 11 wt% (Italy) 
to 75 wt% (Germany) (Watson et. Al, 2018). However, while collection can be a key 
bottleneck to circular economy, also (pre-)sorting and the actual recycling process 
are of significant relevance.

As neither broad collection schemes are fully implemented (bvse, 2020) nor 
standardized/ established recycling processes exist, the development of textile 
(pre-)sorting processes poses a significant challenge. Additionally, textiles entail 
issues for sensor technology, that is established and shows most potential for 
sorting and analysis application in textile sorting: Near-infrared (NIR) spectroscopy. 
This area of tension will be discussed by means of an exemplary task – distinction 
of cotton- and PET-rich textiles.

2 Relevance of external factors on NIR-based textile 
recognition

The afore mentioned challenges for the development of textile (pre-)sorting plants 
are related to:

•	 Unknown input composition, as no harmonized collection schemes exist as 
well as there is not enough information about the material(-mixtures) the 
collected goods are composed of and



111

Limitations in detection of textiles with NIR technology

•	 Unknown pre-product requirements due to non-standardized/established 
recycling processes.

Variability and partly extremely complex structure of textiles due to just partly 
implemented and ongoing development of EPR (Office of the European Union, 2022)

2.1 Textile structure
Textiles are made of fibers, which can be endless, so-called filaments, or a defined 
length, so called staple fibers. Different materials can be combined in textile 
structures on multiple levels – on yarn, fabric and textile level:

Yarn level - Staple fiber and filament yarns can contain several fiber types or 
materials. Often, different staple fiber types are combined in the spinning of staple 
fibers, for example cotton and PET. Furthermore, filaments can be combined on 
in a texturing or twisting process, for example elastane and PET, or during fabric 
production.

Fabric level – Manufacturing semi-finished and finished products of flat textiles 
is mainly carried out by joining. The main joining methods are knitting, weaving, 
crocheting, or felting. In order to achieve certain mate-rial properties (e.g., patterns 
or wearing comfort), yarns made of different materials are sometimes combined with 
each other within one fabric. Depending on how, for example, warp and weft yarns 
in woven fabrics are distributed. 

Textile level – For some textiles several fabrics are combined. There are also 
combinations possible with non-textile materials including imprints, rivets, zippers, 
buttons, etc.

2.2 Input composition
The composition of any material stream determines the limitations and the required 
endeavor for any pre-processing/-sorting. Accordingly, any uncertainties regarding 
the collection schemes and their potential constituents may inhibit the development 
of sound sorting processes. Especially if NIR inactive constituents are present in 
the input material, sorting technology, solely based on this technology might not 
be feasible. But also, the shares of various material Types (PET, cotton, viscose, 
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polyamide [PA], etc.) must be known to allow for dimensioning of processing as well 
as sorting machinery.

On the other hand, collection schemes might be customizable to a certain extent, 
allowing for the elimination of prohibited materials (to be defined) in the material 
stream to the greatest possible extent. This way technological blind spots of pre-
sorting plants could be circumvented. However, it has to be questioned whether the 
public is able to make such distinctions between desirable and prohibited materials.

In addition to the aforementioned factors a fundamental problem in data on textile 
composition persists: Lab results contradict the material composition of textiles, 
specified on their labels. Often those differences amount to low single digit 
percentages but also range up to 20% or more. To cope with such uncertainties 
extensive chemical analyses is necessary to correctly assess textile compositions, 
creating a dependable data basis.

2.3 Pre-product requirements
Just like knowledge regarding the input composition is necessary, data on product 
requirements is essential. This, however, can be a multidimensional issue.

The simplest quality requirements could define the average content of an exemplary 
PET-textile bale - on garment level. It might specify that such a bale must consist 
of at least 90 wt% of textiles, that are each composed of at least 95% of PET yarn. 
Additional specifications could exist like:

•	 2 wt% out of the 10 wt% of other (than specified above) garments, may 
contain cotton contents > 50 %

•	 Textiles with PA content > 10% must not exceed 0.5 wt% share of any PET-
textile bale

•	 Textiles that contain metals (rivets, buttons, e.g.) cannot exceed share of 3 
wt% of any PET-textile bale

A different quality definition of exemplary PET-textile bales might be on chemical 
level, specifying such bales by the average PET-content, which might be min. 90 
wt%. This could mean, that singular garments with much higher cotton contents could 
be found in this bale, as long as the average PET-share of 90 wt% is not undercut. 
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However, also for such a case additional requirements might be formulated, resulting 
in thresholds for shares of certain material types on chemical or garment level, 
similar to the examples given for quality requirements on garment level.

3 Potential and limitations of NIR technology for textile 
sorting

NIR sensors can distinct material types based on their spectral fingerprint, as long 
as those material types are made of NIR-active molecules (Kroell et al., 2022). 
With regard to textiles potential applications might be the distinction of PET, cotton, 
viscose, PA, PE, etc. to separate those material types (see Fig. 1).
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Fig. 1: NIR-spectra of different materials used for textile production (Becker et al. 2023)

Also, analysis of those product fractions might be an application. However, depending 
on the type of product specification quantitative analysis might be a necessity, 
especially when quality is defined on chemical level (cf. Section 1.1.3). Exemplary, 
quantitative analysis of PET-cotton mixtures on spectral level is displayed in Fig. 2.
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Fig. 2: NIR-spectra of different PET-cotton mixtures (Becker et al. 2023)

Wavelength ranges, typical for cotton and PET (around 1420 nm and 1650 nm 
accordingly) are predominantly used to quantitatively assess each object pixel with 
regard to its Cotton/PET content. Systematic shifts in the respective wavelength 
ranges allow for quantitatively assessing the chemical composition (PET & Cotton 
shares) per pixel. Exemplary result can be shown quantitatively as a heatmap-
diagram, as can be seen in Fig. 3.
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Fig. 3: Raw data image (left) visualized in grey-scale image and heatmap-
diagram (right) - red =high cotton-share, blue = high PET-share; red spots are 

paper labels on each textile which are flipped on the upper half

Fig. 3 displays 21 sample textiles, analyzed with an EVK HELIOS EQ32 sensor. 
The processing of the raw data was done with SQALAR-software and the built 
in QCI-function (Quantitative Chemical Imaging). According to the labels of each 
textile all the above shown fabrics are supposed to contain 35% cotton and 65% 
PET. However, cotton-shares vary between 46% and 17% according to chemical 
analysis, proving the shortcoming of labels for teaching purposes. Indicative tests 
(based on NIR-analysis) have shown an average deviation of approx. 3% regarding 
cotton/PET-shares in comparison to chemical analyses of the respective textiles.

Despite the variation in PET/cotton contents, three challenges can be re-traced in 
Fig. 3 with the marked textiles:

1. Depending on the structure of any textile the quantitative analysis with a 
surface technology like NIR-sensors is restricted regarding the representativity 
of the generated data. The textile on the left displays 15% or 77% cotton 
share according to the NIR sensor, depending on which side is visible.



116

Sensor-Based Sorting & Control 2024

2. Large-meshed textiles constitute problematic fabrics as many meshes 
reveal the background, resulting in edge effects all over the textile. Despite 
a systematic under/over representation of a material type this can result in 
increased fluctuations regarding the measured composition in one textile 
(see Fig. 3 (12)).

3. Woven patterns are characterized by revealing certain threads more than 
others locally. This can result in high compositional fluctuations within one 
fabric (see Fig. 3 (13)).

In addition to the fluctuations mentioned above that occur within one fabric, the 
combination of fabrics with various chemical compositions within one garment can 
result in wrong classification of a whole garment, depending on the presentation of 
the respective item.

To which extend the potential of NIR-technology will be utilized in textile sorting 
and how its limitation will influence sorting, depends on the up- and downstream 
processes. For example, if a mean composition is needed per bale, it might not be 
necessary to present each single textile to the scanner from all sides. But if there 
will be strict requirements on article-basis (e.g., each article must contain a specific 
mixture or there are critical thresholds not to be exceeded) the presentation at the 
sensor will be more complex and costly. 

Additionally, the success of the sorting process also depends on how accurately 
each article is recognized. Otherwise, it must be expected that statistically some 
articles will be sorted incorrectly if the entire textile cannot be considered during 
detection.

How much effort is put into recognition therefore depends on unknown framework 
conditions. These must either be defined first or determined iteratively across the 
industry. In addition, the cost-benefit factor and the energy balance of the processes 
should be considered.
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4 Conclusion
The upcoming obligation to collect textiles separately in 2025 entails many novelties, 
challenges and potential. The amount of textiles to be dealt with will rise - not only 
due to the changed collection system, but also due to changes in stricter export-laws 
and recycling policies. The increasing volume requires automated sorting solutions. 
NIR technology is an established and promising sensor technology that is already 
used in textile sorting.

Challenges exist at the different levels of garments (on yarn, fabric, and textile 
level) and can therefore be discussed at these levels. The challenges include: the 
input composition, the measurement methods of product qualities after (pre-)sorting 
and the quality requirements for the (pre-)product fractions (e.g., on the part of the 
recycling processes).

Information on the aforementioned framework conditions is necessary to specify the 
sorting process using NIR technology more precisely. As these variables are partly 
interdependent, iterative steps will be necessary. 

From a technical point of view, a lot is possible in terms of process engineering, 
detection, and data processing. The analysis is possible both qualitatively (relevant 
raw materials are NIR-active and distinguishable) and quantitatively (proportions 
can be differentiated within a median absolute deviation of ±4,6%). The technical 
feasibility is influenced by the presentation on the sensor and the nature of the 
textile.
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Abstract
Europe has a textile waste problem. In numbers: 7-7.5 million tons of textile waste 
are produced in 2020. Up to 9 million tons are expected until 2023. At a certain point 
in the lifecycle, textile products become non-reusable waste – therefore, fiber to fiber 
recycling is critical to turn waste into value. The value chain for textile recycling is 
not yet fully developed. Therefore, only 30-35 % of the discarded textile waste is 
collected. In the EU, about 15-20 % of the collected textile waste is sorted at scale 
by mid and larger-sized sorting facilities. (McKinsey & Company, 2022)

The project “Transform Textile Waste into Feedstock” (TTWiF), led and initiated 
by TEXAID Textilverwertungs-AG, Steinhausen (CH) within the EURATEX ReHubs 
Initiative and well renown clothing brands, sorters, recyclers, industry partners aimed 
to understand the state of art of sorting technologies, aiming for highly automated 
sorting solutions for fiber-to-fiber recycling. TEXAID aims to establish scalable 
sorting facilities across Europe, the first one with a capacity of 50,000 tons by the 



120

Sensor-Based Sorting & Control 2024

end of 2024. The technology assessment (TA) for the project has been entrusted 
to ITA Academy GmbH, Aachen in cooperation with ITA Augsburg gGmbH, Institut 
für Textiltechnik of RWTH Aachen University and SAS CETIA, Bidart, France. The 
interdisciplinary technology assessment team focused on examining the current 
state-of-the-art of processes and technologies for three main scenarios in the 
topics of (Semi-) automated sorting for reuse and recycling and automated pre-
processing for recycling. Facing the aim of achieving sorting capabilities aligned 
with the principles of automation, sensorics, robotics and artificial intelligence, 
several technologies in transportation, preparation, feeding, detection, and logistics 
were scouted, tested and evaluated. Within the research phase, more than 160 
requirements for technologies and feasibilities were collected and evaluated 
in cooperation with an international consortium of recyclers, manufacturers, 
and brands. To ensure a feedstock supply for circularity, according to the waste 
hierarchy, the technology assessment was designed to fill the gap in current 
sorting solutions for reuse, to evaluate and to train algorithms for AI-based pattern 
recognition and non-destructive handling of garments. In parallel, sorting categories 
for recycling scenarios were developed to elaborate a training scenario for Near 
Infrared Spectroscopy (NIR), Fourier Transform Infrared Spectroscopy (FTIR) and 
other sensors. Within the collaborative project, current challenges in developing 
innovative processes with new technologies were demonstrated. A central result of 
the study is a lack of market-ready technologies to close the loop in textile recycling. 
Sensor technologies for the recognition of material composition doesn’t meet the 
current needs of recyclers. Also, data science and digitalization will play an important 
role in scaling sorting solutions for the textile and apparel industry.

1 Introduction
Textile consumption in Europe contributes the fourth largest part worldwide to 
environmental pollution, following food production, housing, and mobility. This 
industry also puts significant pressure on raw material usage and greenhouse gas 
emissions, making it one of the top three sources. (European Environment Agency, 
2019) Reacting on this enormous impact, in September 2023 all over the world 
students participated in the 13th Global Climate Strike against global warming, 
climate change and wasting of resources (Deutsche Welle, 2023).

The problem of textile waste in Europe is significant. Currently, 7-7.5 million tons 
of gross textile waste are generated (McKinsey & Company, 2022). According to 



121

Sensor based sorting solutions for reuse and recycling in textile and apparel industry

the authors at a certain point, textile products become non-reusable waste, and it 
becomes necessary to recycle them into usable materials. Fiber-to-fiber recycling 
is critical, as it can help turn waste into value. However, the value chain for textile 
recycling is not yet fully developed. Only 30 - 35 % of the discarded textile waste is 
collected. Out of the collected waste, 15 - 20 % is sorted at scale by mid and larger-
sized sorting facilities in the European Union, as McKinsey (2022) noted. Currently, 
less than 1 % of apparel and home textiles are recycled. 

Thermo-mechanical recycling: 
Expand capacity and solve 
technical challenges for thermo-
mechanical textile recycling

Capsule collections: 
Create capsule collection(s) with 
post-consumer recycled products

Feedstock: 
Transform textile waste into 
feedstock

Mechanical recycling: 
Increase the adoption of 
mechanically recycled fibers in 
the value chain
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Fig 1: Four major gaps in the value chain. Identified by ReHubs  
Initiative by Euratex (EURATEX, 2022)

By 2025, all European Union member states are obliged to collect textile waste 
separately according to the European Union Law (Directorate-General for 
Environment, 2022). This will increase the quantity of collected textile waste 
substantially. However, the quality of the collected items may decrease since the 
textiles that are currently being incinerated will also be collected. As a result, a 
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higher percentage of the collected textile waste will need to be recycled. To create a 
circular textile loop, the recycled material will have to be sorted by many parameters 
such as composition and material type. Currently, the sorting process is primarily 
manual and not automated. To meet future demands on the amount of waste that 
needs to be collected and sorted, as well as the demand for recycling feedstock, it 
is necessary to match liability and create cost efficiency.

2 Aim of the project
The aim of the “Transform Textile Waste into Feedstock” (TTWiF) project, led by 
TEXAID Textilverwertungs-AG, Steinhausen, Switzerland and initiated within the 
ReHubs Initiative by EURATEX, was to understand the state of art in sorting of 
textiles for reuse and recycling in Europe and how this could be scaled to meet 
future demands. The technology assessment (TA) aims to identify state of the art 
technologies which are suitable to be implemented within a waste sorting facility. 
Within the TA, the consortium was able to provide an overview and blueprint plan of 
the best available techniques, systems and technologies on how the sorting process 
would be built up best. Also, it was shown how different technologies will be able to 
be integrated and connected. Three major segments have been identified for which 
an in-depth TA is necessary:

1. (Semi-)Automated sorting for reuse 

2. Automated sorting of recycling qualities

3. Automated pre-processing for recycling

Within the TA, the technologies of each subfield are evaluated on:

•	 Technology Readiness Level (TRL): The degree of development the 
technology has reached, from concept to commercialization.

•	 Scalability: The ability for the technology to be scaled up or down as needed.

•	 Availability: The extent to which the technology is accessible and readily 
available.

•	 Speed: How quickly the technology can perform its intended function.
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•	 Size: The physical dimensions of the technology.

•	 Upgradability and modularity: The degree to which the technology can be 
easily disassembled and reassembled for maintenance or upgrades.

•	 Integrability: The capacity of the technology to be integrated with other 
technologies or systems. 

•	 Environmental and economic performance: The impact the technology 
has on the environment and the economic feasibility.

2.1 (Semi-)Automated sorting for reuse 
Sorting mixed clothes, shoes, and accessories for reuse and recycling is a labor-
intensive task that is typically performed manually through several sorting steps. 
The goal of the process is to separate waste and sort items into specific product 
and quality categories. To improve efficiency and accuracy, it is planned to involve 
implementing automated handling and transportation technologies and sensor-
based parameter detection. The system must recognize specific attributes such 
as product type, garment condition, size, brand, style, main material, color, textile 
construction, and trims. The system should also be capable of scanning garments 
with Digital Product Passports (DPP) as well as those without an information tag.

2.2 Automated sorting of recycling qualities
Currently, sorting of recycling qualities is carried out manually, relying merely on the 
look and feel of the material to determine its condition. However, this method cannot 
guarantee the accuracy of the material composition of a batch going for recycling. 
The process becomes even more complicated when the garment consists of a 
mixture of different fibers or is multilayered with various materials used. To enable 
fiber-to-fiber recycling, product and quality categories must be further sorted by fiber 
composition. Therefore, it is vital that the system sorts the products based on the 
complexity of the garment, scanning both the outside and inside, front and back of 
a garment and preferably recognizing trims.
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2.3 Automated pre-processing for recycling
To achieve successful fiber-to-fiber sorting, the recycling qualities of the products 
need to undergo pre-processing. This involves removing impurities like trims, buttons 
and other components that might disrupt the recycling process. Trims can be cut 
off manually or by semi-automatic cutting tools. However, complex garments with 
multiple layers and trims pose a challenge and are usually sorted into downcycling 
or incineration fractions. To address this challenge, different vision and leading-edge 
technologies will have to be used to remove trims automatically. 

3 Solution Approach
The TA has been segmented into three parts reuse and recycling, sorting of qualities 
and pre-processing for recycling. The reuse decision revolves around extending 
the lifespan of textiles by selling them as second-hand ware. After the end of their 
useful life, the recycling decision focuses on finding the most useful application of 
materials. In the context of pre-processing for recycling, additional process steps 
such as cutting, or the removal of contaminants are intended to provide a high-
quality feedstock for various recycling technologies. These segments are designed 
to be established independently as standalone steps and distinct topics, while also 
integrating each other for a cohesive process. The initial layer of the TA provides a 
comprehensive overview, interconnecting various competencies and technologies, 
emphasizing integrability between the segments. To effectively sort garments, a 
promising approach was defined, that maintains a holistic perspective, prevents 
duplicative efforts, and maximizes synergies among competences and technologies. 
The following steps outline the recommended approach:

•	 Establish general requirements and sorting criteria for recycling 
technologies. Evaluate physical measurement principles and identify suitable 
technologies from diverse sectors, considering multiple sources.

•	 Compile a list of best-available technologies in the market, adaptable to 
various process steps. Research extensively, conducting technology 
assessments based on criteria like detection rate, removal efficiency, waste 
generation, speed, investment and cost.
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•	 Conduct comprehensive tests for most promising technologies to elaborate 
technology readiness level, relevant key performance indicators (KPIs) and 
feasibility for detection and sorting.

•	 Employ a decision matrix for technology and supplier evaluation, 
incorporating prioritization and risk analysis. Test selected technologies for 
output quality, detection rate, removal efficiency, waste generation, speed, 
investment and cost.

•	 Develop a comprehensive plan for a demo plant, covering capacity, 
equipment sizing, storage, etc.

•	 Conduct a gap analysis between the current state and desired outcomes, 
identifying areas for improvement and optimization in the recycling process.

4 Key Findings
To achieve the capabilities in automatic sorting for reuse and recycling, several 
technologies in transportation, preparation, feeding, detection, sorting, and logistics 
were analyzed. For the observation, current state of the art machines, processes 
and software solutions were investigated, tested, and evaluated aligning and 
incorporating automation, robotics, sensor technology and artificial intelligence. 

4.1 Requirements
In the research phase of the project, over 160 technology and feasibility requirements 
were gathered and evaluated through collaboration with an international consortium 
comprising recyclers, manufacturers, tech startups and brands. General prerequisites 
included autonomous operation and non-damaging effects on garments. For material 
characterization, historical sensor and machine data must be stored centrally for 
traceability. Recycling demands consideration of product and quality categories, 
particularly focusing on fiber composition for successful fiber-to-fiber recycling. 
Sorting complexity involves detailed scanning of external and internal garment 
aspects, ensuring a maximum 5 % tolerance level for accurate sorting. The system 
should ideally recognize trims and facilitate color sorting, with the goal of automating 
over 90 % of the recycling process. Additionally, the system should be designed for 
extendibility, allowing for future upgrades or adaptations to accommodate evolving 
recycling technologies and standards.
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4.2 Definition of recycling categories
A comprehensive survey was conducted involving various companies across the 
textile recycling process chain. The objective was to gather insights into source 
materials, processing methods, and sector-specific requirements to support 
both open and closed loop recycling practices. The survey covered existing and 
prospective recycling technologies, focusing on establishing a circular economy 
in the textile industry. The analysis included mechanical, chemical, and thermo-
chemical recycling processes to identify relevant recycling categories. Key 
performance indicators were derived from the findings, emphasizing their significance 
in automated textile sorting, and subsequently ranked through pairwise comparison. 
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Fig 2: Ranking of the importance of measurement criteria for recycling solutions

4.3 Technology assessment and selection
To ensure a reliable feedstock supply for circularity, as defined per waste hierarchy 
(UNEP, 2011), the TA was designed. The assessment aimed to address the current 
shortcomings in sorting solutions for reuse and to evaluate and train AI-based 
algorithms for pattern recognition and non-destructive handling of garments. In 
addition, sorting categories for recycling scenarios were developed and a training 
program was created for sensors like NIR, FTIR and others. 
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4.3.1 Pattern recognition for reuse solutions
A project internal taskforce for artificial intelligence (AI) solutions conducted a 
workshop for acquisition of requirements and definition of the recognition and 
classification process. While acquiring the requirements, the taskforce conducted a 
pairwise comparison to rank the performance metrics.
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Fig 3: Ranking of Importance of detection criteria for reuse solutions

Four AI technologies which can identify garments regarding their attributes (e.g.: 
color, size, fabric structure) were identified and evaluated:

•	 Software for garment recognition

•	 Software for garment recognition & tagging

•	 Software for AI training & deployment platform

•	 Software for garment size measuring

The technologies were evaluated regarding their identification precision, speed 
as well as their integration requirements. As the project advanced, the search for 
technologies capable of meeting the project’s prerequisites commenced. These 
technologies could include individual solutions or complete industrial systems. 
Following this, a comprehensive assessment of these technologies was conducted 
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to gauge their suitability for the specific application. This assessment involved a 
thorough review of scientific papers, patents, and existing industrial solutions.

4.3.2 Handling, reuse-sorting and logistics solutions 
During the evaluation process, various technologies like a tray sorter, separation 
robots and garment-on-hanger (GOH) sortation systems were inspected and 
examined for feasibility, and implementation concepts were discussed with providers. 
The tray sorter was found to be the best suitable option for large volume operations, 
due to performance speed, flexibility, and modularity. The system consists of a 
network of trays that transport items to designated destinations. These trays move 
along a conveyor system, and the items are sorted based on predetermined criteria, 
such as destination or parameters. The efficiency of tray sorters lies in their ability 
to handle a high volume of items rapidly, reducing manual labor and increasing 
accuracy (Lenkeit, 2023). They come with a high TRL and are commonly used in 
e-commerce, retail, and postal services where fast and precise sorting is crucial. 
However, tray sorters may face limitations in handling flexible, irregularly shaped 
items or items with varying dimensions.

However, the system is not yet applied to textile and specifically garment handling. 
The feasibility study with various garments has shown four major risks to be solved:

•	 Damage to garments: Soft and flexible garments, may be more prone 
to damage when subjected to the mechanisms of a tray sorter. The rigid 
structure of trays and potential drop points could cause wrinkles, creases, 
or tears in the fabric.

•	 Inefficient sorting: Tray sorters are optimized for handling items with defined 
shapes and dimensions. Soft garments may not stack neatly or consistently 
on trays, leading to sorting errors and inefficiencies.

•	 Reduced accuracy: The sorting process relies on precise item positioning 
and orientation. Soft garments may not maintain a consistent form on the 
trays, leading to misalignment and errors in the sorting process.

•	 Maintenance challenges: Soft fabrics may be more likely to get caught or 
tangled in the machinery, leading to increased maintenance requirements 
and potential downtime.
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Further automation systems like automated folding systems and GOH transportation 
systems are already sufficiently implemented in textile manufacturing scenarios, 
due to smaller variety and recurring fabric sizes, surfaces, and weight. But in the 
sorting scenario with tremendous product variations, the existing technologies are 
coming to their limits. In further tests and expert interviews, the feasibility could 
not be proven. To ensure an optimal feedstock for reuse of garments, a manual 
separation step is necessary to pre-sort into the sections “recycling” and “reuse” and 
the subcategory “feedstock format”. The pre-sorted garments are then transported 
through a conveyor belt equipped with an AI-based camera system for detection of 
further parameters like style, size, color, and brand. 

4.3.3 Sorting for recycling solutions
For each of the described measurement criterions (see Fig 2), technical solutions 
were developed. In the case of each identified solution, the underlying physical 
principles were initially documented and categorized. Subsequently, the solutions 
were assigned to the specific measurement tasks, further classified as individual 
sensors, measurement systems, or industrial sorting solutions. Measurement 
systems could be further subdivided into handheld sensors, laboratory equipment, 
and industrial systems. In accordance with the requirements for an automated 
sorting system with high market readiness, only industrial individual solutions and 
complete sorting solutions were considered. Within the scope of the project, systems 
from six providers were subsequently put to the test. For the testing process, three 
different batches were utilized (Fig 4). The first batch drew upon the material 
database from Refashion/Eco TLC, France offering insights into the accuracy of 
material composition recognition. This batch (“Batch 0”) comprised 409 samples 
with known compositions determined through laboratory analyses. In addition, there 
was a second batch (“Batch 1”) composed of whole garments, representing a cross-
section of the raw materials generated during textile collection. The third batch 
(“Batch 2”) consisted of cut textiles containing various contaminants and impurities.
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Batch 0 Batch 1 Batch 2

• 409 samples 
with known 
composition, 
colour, etc.

• State of the art 
in material 
recognition

• Different kinds 
of full garments

• State of the art 
in handling and 
transportation

• Two batches of 
cut pieces

• State of the art 
in impurity and 
trim detection

Fig 4: Overview: Garments used of the technology assessment

Depending on the type of technology to be tested and the capacity available at the 
provider’s testing centers, one or more batches were subjected to evaluation using 
these systems. Systems capable of capturing and sorting entire garments were 
tested with “Batch 0” and “Batch 1”.

The testing process encompassed a qualitative assessment of material recognition 
and the system’s ability to handle a diverse range of clothing items. The systems 
under consideration typically comprise a conveyor belt with an inspection unit 
positioned above it. They incorporate various technologies such as near-infrared 
sensors, cameras, and metal detectors. Located behind these units is a rejection 
mechanism, typically operated using compressed air.

The results from the system tests reveal that the requirements for material 
composition recognition are not entirely met. Initial qualitative pretests had already 
indicated that significant deviations, particularly in the case of material mixtures, are 
present. This is not an issue specific to a single provider but rather a widespread 
challenge due to the relatively recent application of near-infrared (NIR) technology 
to mixed textiles. On the other hand, there are no significant concerns with color 
recognition. As per current knowledge, the employed color cameras can meet the 
requirements for sorting in recycling applications. Notably, the systems do not have 
the capability to capture the other five performance metrics.
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Due to the significant number of unmeasured performance metrics, including 
impurities, contamination, feedstock format, fabric structure, and weight, a two-step 
sorting stage is necessary for precise sorting, as required for fiber-to-fiber recycling. 

•	 Step: Multicategory sorting

•	 Step: Binary sorting

Based on the decision for a two-step sorting procedure, each process was designed 
individually.

5 Conclusion
The critical challenge identified in this study is the difficulty in developing a process 
for textile waste sorting due to the rare and varied process steps, each at different 
Technology Readiness Levels (TRLs). The complexity increases with the unexplored 
nature of textile waste sorting and the use of technologies not originally designed 
for textiles. Textile waste, unlike other waste streams, lacks standardization, 
especially in terms of sorting for reuse. The test results in the reuse section have 
shown, that current industry solutions are not matching the degree of precision in 
detection of style and shape and variety in labelling as garment type and e.g. sex. 
Semi-automated sorting for reuse is at a premature TRL, making full automation 
challenging, with skilled operators remaining crucial. For automated sorting for 
recycling, research indicates that current sensors lack the maturity to precisely 
meet recyclers’ feedstock requirements. While current sensors lack the maturity 
to precisely meet recycler’s feedstock requirements (Du, et al., 2022) (Zhou, et al., 
2019) challenges arise in quantification and real-world application for post-consumer 
textiles. The identified technology gaps encompass the necessity for advancements 
in databanks supporting the technologies, as well as improvements in scanning 
accuracy and precision. 

Pre-processing is highly specific and varies based on use cases and specific 
recyclers, making standardized solutions difficult. A proposed solution involves a 
two-step sorting process for recycling to address quality control and pre-processing 
challenges. Overall, the diverse requirements across different use cases, value 
chains, and stakeholders contribute to the complexity of sorting and preprocessing 
for reuse and recycling. The study also highlights a lack of datasets, both 
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technologically and in terms of the need for digitalization, hindering the unlocking of 
potential data in sorting processes in the future. 

6 Outlook
The collaborative project has revealed current challenges in developing an 
innovative process with new technologies due to the unexplored field of textile 
recycling. Developing a new process with new technologies comes with its own 
set of challenges. One of the biggest issues is dealing with different technology 
readiness levels (TRLs) within the reuse, pre-processing, and recycling stages. 
Sensor technologies for recognizing material compositions currently don’t meet the 
needs of textile recyclers. Additionally, requirements vary significantly for different 
use cases, value chains, and stakeholders. Medium-term, skilled operators will play 
a crucial role in textile waste sorting, and data will be essential for digitalizing and 
scaling sorting solutions for the textile and apparel industry.
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Abstract
WEEE devices and end-of-life vehicles contain large shares of metals and plastics. 
Many WEEE devices and all ELV undergo manual treatment and are then treated 
in shredder plants with the focus on high metal recovery rates. Most plastics end 
up in plastic-rich shredder residues, showing elevated bromine contents for WEEE 
residues and elevated chlorine contents for ELV residues. Laser spectroscopy 
and XRT sorting have been combined to sort PC/ABS and bromine-free ABS and 
PS from WEEE plastics with purities of 98% and more in a dry process chain. 
Trials with shredder residues from one automotive OEM demonstrated that laser 
spectroscopy is also a powerful tool to enrich polyolefins, polyamides as well as 
PC/ABS in separate sorting fractions, regardless of color and soot content, and of 
mineral or fiber shares. Combinations with other sorting technologies can further 
enhance regrind qualities and even produce highly purified recompounds, freed from 
inert and soluble contaminations to supply closed-loop feedstock.
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1 Introduction
Electrical and electronic products as well as passenger vehicles are firmly established 
in everyday life. At the end of their useful service life these products, so-called waste 
electrical and electronic equipment (WEEE) and end-of-life vehicles (ELV), must be 
recycled. Large amounts of WEEE and ELV plastics escape recycling via sorting 
residues that cannot be recovered by state-of-the-art waste sorting. 

The European Strategy for Plastics in a Circular Economy sets the target of recycling 
more than half of plastic waste generated in Europe. Discussions on recycled 
contents, plastics tax, recycling rates and waste coverage have been going on in the 
revision of the Waste Framework Directive (WFD) and the revision of the Ecodesign 
Directive. They reveal the need to increase existing recycling capacities and to 
further develop and implement waste collection systems and treatment concepts to 
recycle more plastics from WEEE and ELV wastes. In addition, they clearly indicate 
the demand for high mechanical quality as well as legal compliance of recycled 
polymers, both being key for a successful implementation of a circular economy 
for plastics.

With regard to plastic-rich WEEE streams, bromine-contaminated, plastic-rich sorting 
fractions are produced in primary treatment plants, either as dismantling fractions or 
as post-shredder fractions. According to the state-of-the-art, acrylonitrile butadiene 
styrene (ABS), polystyrene (PS) and polyolefins with a density of ρ < 1.1 g/cm³ can 
be recovered via two-stage density separation and tribo-electrostatic sorting. Other 
high-quality engineering plastics - in particular PC and PC/ABS as well as bromine-
rich ABS and PS grades - accumulate in the density fraction ρ > 1.1 g/cm³ and are 
not recycled. (Arends et al., 2022) 

ELVs are handed over to shredder plants after pre-treatment in dismantling centers. 
In shredder plants plastics end up in the shredder light fraction (SLF) and in residues 
of the shredder heavy fraction (SHF) and can be enriched in rigid plastics fractions 
by state-of-the-art post-shredder treatment. These shredder residues contain high 
shares of thermoplastics as well as rubbers, residual foams, textiles and metals. 
State-of-the-art post-shredder sorting of ELV plastics can comprise the enrichment 
of target plastics in density fractions ρ < 1.1 g/cm³. Since plastic-rich shredder 
residues from ELV contain polyolefins with and without mineral fillers and fibers, 
fiber-free and fiber-reinforced polyamides as well as ABS, PC and blends thereof, 
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most ELV plastics cannot be recovered by state-of-the-art sorting yet. (Schlummer 
& Merkert, 2023) 

In the scope of the finalized WEEEsense project (BMBF FKZ 033RK063) a sensor 
based sorting chain was developed and tested to sort ABS, PS and PC/ABS regrinds 
with high purities for reuse in the EEE industry. Specific flame retardant analysis 
was performed in the frame of the KUREA project (UBA FKZ 3719343090) for 
WEEEsense output fractions of one sorting trial.

Trials with automotive shredder residues aimed at sorting polyolefins, polyamides 
as well as PC, ABS and PC/ABS, regardless of soot content, and mineral or fiber 
shares. 

2 Materials and Methods
2.1 Materials WEEE
Five groups of WEEE devices were pre-sorted and treated in a German dismantling 
facility: 1. TV casings, 2. Laser printers, 3. Inkjet printers, 4. Small household 
appliances and 5. Consumer electronic devices. Metals were separated after 
shredding by state-of-the-art metal separation. Fine grains were removed in a 
sieving step to provide plastic-rich residues with particle sizes > 10 mm. Plastics 
from laser and inkjet printers were merged as were those from small domestic 
devices (SDA) and small consumer electronics (ICT). Spectroscopic sorting trials 
were performed with input amounts of 79 kg to 246 kg.

3 Materials ELV
ELV shredder residues from one automotive original equipment manufacturer 
(OEM) were produced in German shredder plants. Rigid plastics were enriched 
post-shredder by state-of-the-art sieving, wind-sifting, metal and cable separation. 
Spectroscopic sorting trials were performed with input amounts of 70 kg to 260 kg 
of plastic-rich, rigid shredder residues. Each input contained the target plastics PP, 
PE, PA6, PA6.6, PC, PC/ABS and ABS. 
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3.1 Methods
Based on the thermoplastic polymer contents of the input fractions three 
target polymer fractions were defined for WEEE sorting, i.e. 1. PS, 2. ABS and 
3. PC + PC/ABS and three target fractions were defined for ELV sorting, in particular 
1. Polyolefins (PO), 2. Polyamides (PA) and 3. PC + ABS + PC/ABS (PCABS). 

Spectroscopic WEEE sorting was performed according to Fig. 1 with industrial 
sorting equipment.

Fig. 1: Sorting chain of the WEEEsense project

For X-ray transmission (XRT) sorting the X-TRACT (Tomra Sorting GmbH, Germany) 
was used. ELV trials did not comprise XRT sorting.

Separation by plastic types was performed for all inputs, from WEEE and ELV, by 
laser spectroscopy. According to the particle size, the Powersort 360 (Unisensor 
Sensorsysteme GmbH, Karlsruhe, Germany) and the Powersort 200 (Unisensor 
Sensorsysteme GmbH, Karlsruhe Germany) were used. Target plastics were 
enriched and purified by multiple laser spectroscopic sorting.

Fourier transform infrared (FTIR) screening was performed throughout the process 
chain with the FTIR-ATR Nicolet iS 5 (Thermo Fisher Scientific Inc., Waltham, 
USA) and ALPHA (Bruker Corporation, Billerca, USA) to determine target polymer 
contents of ejects and drops.

Energy dispersive x-ray fluorescence (EDXRF) analyses were performed with 
a Spectro XEPOS (Spectro Analytical Instruments GmbH, Kleve, Germany) to 
determine bromine and phosphorous contents of input and output fractions.

Specific brominated flame retardant analysis was performed via gas chromatography 
(GC) with a GC-2010 Plus AF using an electron capture detector (ECD) (Shimadzu, 
Japan) with a 15 m DB-5 column. The GC-ECD method used was an in-house 
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method for the determination of a range of flame retardants. An external calibration 
was used for the quantification.

Qualitative and quantitative determination of phosphorous flame retardants 
was carried out after chromatographic separation with the high pressure liquid 
chromatography system HPLC Waters Alliance 2695  by using the low-resolution 
mass spectrometer Waters Quattro Ultima Platinum (Waters Corporation, Milford, 
USA) in a heated gas stream in positive electrospray mode. Quantification was 
performed using external standard solutions.

4 Results

4.1 Results WEEEsense
Fig. 2 shows the output fractions of the sorting chain tested. 42% of the plastics from 
TV flat screens, 51% of SDA & ICT plastics and 63% of plastics from printers were 
enriched in target fractions. Target polymers were sorted into recovery fractions from 
sorting rejects, they accounted for 15% to 20%. The bromine-rich fraction accounted 
for 15% for TV flat screens, 9% for SDA & ICT and 3% for printers.

Fig. 2: WEEEsense output fractions
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The target fractions showed purities > 98% for all but one target fraction that only 
exhibited a purity of 95%. The recovery fractions contained > 90% target polymers. 

Mechanical testing of ABS and PS recompounds, including melt flow rate, 
impact strength and E-modulus, met specifications of feed-stocks for the printer 
production. The PC/ABS needed further laser spectroscopic sorting to reduce 
residual polyoxymethylene (POM) contents and showed good mechanical properties 
afterward.

Phosphorous enriched in PC/ABS target fractions with approximately 3.000 ppm 
and is mainly caused by the presence of triphenyl phosphate (TPP). Bromine levels 
were below 2.000 ppm for all target fractions, and below 1.000 ppm for most of them. 
Bromine concentrations determined in bromine-rich XRT fractions were between 
23.000 ppm and 71.000 ppm. Specific flame-retardant analysis of SDA & ICT output 
fractions showed that BDE-209, subject to the restriction on hazardous substances 
(RoHS) and the regulation on persistent organic pollutants (POPs regulation), and 
DecaBDEthane contents were close to or below the limit of detection in all SDA & ICT 
target fractions. They enriched in the bromine-rich XRT fractions, first and foremost 
Tetrabromobisphenol A (TBBPA) but also Decabromodiphenyl ester 209 (BDE-209) 
and decabromodiphenyl ethane (DecaBDEthane). (Potrykus & Schlummer, 2022)  

4.2 Discussion WEEE
ABS, PS and PC/ABS from different WEEE input streams were sorted in a dry 
process chain, comprising XRT and laser spectroscopic sorting. The target fractions 
show high purities and low bromine levels. As TPP is a commonly used flame 
retardant for PC/ABS, it enriches in the PC/ABS sorting fraction. Mechanical test 
results, not presented in this paper, show good properties of the recompounds even 
without adding virgin material.

Sorting residues can be reduced by enriching target plastics from sorting rejects. 
The recovery fractions show high contents of target plastics and can be reinserted 
into the sorting chain. With regard to SDA & ICT, yields can also be increased by 
considering polyolefins that were out of the scope of the WEEEsense project.

Bromine levels were below 1.000 ppm for most target fractions. Contents of 
regulated brominated flame retardants were close to the limit of detection in all 
target fractions. With the combination of XRT and laser spectroscopy, they can be 
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enriched in separate bromine-rich PS and bromine-rich ABS fractions. Elimination of 
brominated flame retardants can be performed in dissolution-based plastic recycling 
to supply purified ABS and PS (Strobl et al., 2021). 

4.3 Results ELV
Sorting trials were performed for four different input fractions to enrich the target 
plastics into three sorting fractions PO, PA and PC/ABS. Target plastics were 
enriched in a first step and purified by a second laser spectroscopic cleaning step. 
Tab. 1 shows the average yield for the target polymers with reference to the input 
content of each polymer. PO yields amounted to 74%, PA yields to 80% and PC/
ABS yields to 87%, indicating a percentage rise of purities (Fig. 4 right) to 79% for 
PO, to 67% for PA and to 86% for PC/ABS.

Tab. 1: Average target polymer yields with reference to input content 
and purities of target fractions after enrichment

PO PA PC/ABS
yield 74 % 80 % 87 %
purity 79 % 67 % 86 %

26% of polyolefins, 20% of polyamides and 15% of PC/ABS could not be sorted into 
target fractions and were lost in sorting rejects of the trials instead. Target polymers 
were sorted from one of the sorting rejects with yields and purities comparable to 
the ones shown in Tab. 1. 

To further increase the target polymer contents, another laser spectroscopic cleaning 
step was performed for a PO fraction with an input purity of 66%, a PA fraction with 
an input purity of 71% and a PC/ABS fraction with an input purity of 91%. Tab. 2 
shows the yields with reference to the input content of laser spectroscopic cleaning. 
PO yields of 82%, PA yields of 89% and PC/ABS yields of 92% were determined. 
This cleaning step increased the purities (Tab. 2) to above 85% for PO and PA and 
to 94% for PC/ABS.
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Tab. 2: Target polymer yields with reference to input content and 
purities of target fractions after further purification

PO PA PC/ABS
yield 82 % 89 % 92 %
purity 87 % 85 % 94 %

4.4 Discussion ELV
The sorting trials show that high shares of polyolefins, polyamides, PC, ABS and 
PC/ABS were enriched in sorting fractions with purities of almost 90% for PO and 
PA and even 94% for PC/ABS. However, each sorting step entails yield losses. Yield 
losses are lower for inputs with higher target polymer content. Valuable amounts 
of target polymers that reach reject fractions can be enriched by sorting recovery 
fractions aiming at the target polymers from sorting residues to reinsert them into 
the sorting chain. 

Residual contaminations are too high for direct recompounding to high quality 
recycled polymers and thus, sorted target fractions require additional purification 
technologies before recompounding. These should address the reduction of residual 
rubbers and other foreign polymers, the reduction of fiber and mineral contents, 
the discharge of residual chlorinated particles, the separation of residual foreign 
polymers and also the separation of PA6 and PA6.6 from the PA sorting fraction.

However, advanced sorting chains can produce feedstock for physical, dissolution 
based recycling processes, also known as solvent-based purification, to recover 
highly pure rPP, rPC/ABS, rPA6 and rPA6.6 grades from shredder residues as has 
been demonstrated by the CreaSolv® Process in earlier projects (Schlummer et al., 
2022; Strobl et al., 2021; Kohlmeyer, 2023).

5 Perspective
The sorting trials performed with XRT and laser spectroscopy open up ways to 
include more technical thermoplastics and fiber reinforced or filled polypropylene 
into existing recycling concepts. Combining these sensor-based technologies with 
density-based and tribo-electrostatic or solvent-based recycling can further increase 
regrind qualities and closed-loop recycling rates.
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Abstract
Solid wastes contain various and valuable materials. Due to their differing properties, 
individual treatment processes are needed for their recovery. After liberating 
the materials from one another, sorting is necessary to channel them into their 
respective treatment pathways. Sensor-based sorting offers flexible, customized 
solutions for various sorting problems. Sensor-based sorting machines can be 
equipped with different types of sensors for the specific sorting tasks. The quality of 
the sorting process depends not only on the sensors used, but also on the individual 
characteristics of the material flows and on various other factors related to the 
design and configuration of the sorting machine.

The present study aimed at (1) developing artificial intelligence (AI)-based and 
non-AI-based digital methods to automatically analyze input and output streams 
of a sorting plant; and (2) understanding the correlation between specific process 
parameters of a sensor-based sorter and the sorting quality (e.g., purity and yield) of 
plastic waste. Four process parameters including the air pressure for the pneumatic 
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ejection, the material size, the position of the separating vertex and the occupation 
density of the conveyor belt were investigated.  Experiments were conducted by 
varying single factor to evaluate the relationship between the process parameters 
and the sorting results. The sorting process was automatically analyzed with tools of 
computer vision and machine learning. During the sorting experiments, the material 
flow characteristics of the input and output stream were monitored using camera. 
Based on these data and the respective process settings, the relationship between 
process parameters and sorting quality (i.e., purity, yield) was analyzed. 

This paper shows the possibility of digital methods to monitor sorting processes with 
the goal of automated evaluation of experiments. The experimental results reveal 
that the purity and yield of ejected material is influenced by the size of the material. 
The occupation density on the conveyor belt shows a negative impact on the purity 
of the eject fraction, meaning that a higher occupation density lead to a lower purity 
of the eject fraction. 

1 Introduction
Solid waste management is a critical global challenge due to the large volume 
and diversity of materials in solid waste streams. In 2021, the global plastics 
production was 390.7 million tons (Plastics Europe, 2022). In Germany, the plastic 
waste production for the same year was of 21.1 million tons (Plastics Europe DE, 
2022). Material recovery from waste is essential for contributing to the reduction 
of natural resources demand. However, still more than half of the plastic waste 
in Germany in 2021 was incinerated rather than recycled (Umweltbundesamt, 
2022). The incineration of plastics increases the greenhouse gas emissions for two 
reasons: (1) the combustion of carbon-based material and (2) the production of 
virgin material, which leads to negative environmental impacts. Thus, incineration 
as a way of treatment of plastic waste goes against the goal of achieving climate 
neutrality by 2045 in Germany.  The first step of managing household wastes is 
a source-separated collection. The collected recyclable waste is transported 
to a transshipment point, before being transported to a sorting facility. In the 
sorting facility, the waste is mechanically separated into different fractions (e.g., 
polypropylene [PP], polyethylene terephthalate [PET], high-density polyethylene 
[HDPE]), ferrous metals and non-ferrous metals). Each fraction is then transported 
to a recycling facility to produce recyclates (Umweltbundesamt, 2021). 
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An effective recycling of waste streams requires specialized treatment processes 
according to the different types of waste. A key aspect of this recovery process 
is the sorting of materials, which involves separating them based on their unique 
properties (Küppers et al., 2020). In recent years, sensor-based sorting has emerged 
as a promising and flexible solution for addressing the complexities of solid waste 
sorting (Feil et al., 2019; Kroell et al., 2022).

The design and configuration of sorting machines and the characteristics of material 
flows have a significant impact on the overall performance of the sorting process. 
Therefore, a comprehensive understanding of these factors is crucial for optimizing 
the performance of sensor-based sorting systems in waste management. Several 
research papers have been dedicated to investigating the impact of physical 
characteristics, such as sample thickness, labeling and surface roughness of 
materials on the performance of sorting processes (Küppers et al., 2019; Masoumi 
et al., 2012; Zhang et al., 2022). Recently, with the digital transformation, artificial 
intelligence (AI) has emerged as a promising tool for optimizing waste treatment 
processes.

This study aims to (1) develop AI-based and non-AI-based digital methods to 
automatically analyze input and output streams of a sorting plant, including the 
material’s physical characteristics, material flow of the conveyor belt and digital 
assessment of the sorting result; and (2) understanding the relationship between 
specific process parameters in the sorting of plastic waste and the sorting quality 
(e.g., purity and yield) of the target fractions.

2 State of the art
In Germany, the collected recyclable waste from households is preprocessed in 
centralized sorting plants. These sorting plants use sifting, screening, magnetic 
separation, eddy-current separation, ballistic separation and other processes to 
separate the incoming waste stream into marketable fractions. Subsequently, the 
recyclable waste is sorted using near-infrared (NIR) spectroscopy into different types 
of plastics such as PP, polystyrene (PS), PET, polyethylene (PE). The sorted plastic 
is then pressed into bales for transport to the processing company (Knappe et al., 
2021). Sink-float density separation is also widely employed for plastics sorting due 
to its simplicity in design and low operating costs (Karmana et al., 1997). However, 
this method does not allow the separation of material streams of similar density, 
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such as PP and PE (Umweltbundesamt, 2021). As they have distinct near-infrared 
spectra, NIR-based sorters are primarily used in plastic sorting (Gundupalli et al., 
2017). 

According to a study by (Gabriel & Maulana, 2018), the printing and coloring 
of plastics can have a negative effect on NIR sorting, especially in terms of 
light transmission level. (Küppers et al., 2019) discussed the influences and 
consequences of mechanical delabelling on PET recycling. The overall shape of the 
spectrum remains the same for different plastic thicknesses and the peak points are 
fixed, with the absolute reflectance values increasing with thickness (Masoumi et al., 
2012).  Increased surface roughness improves the classification of both, spectrally 
similar and transparent plastics. However, the influence of surface moisture on 
the yield of plastics is usually very low and depends on the spectral differences 
between the different plastics (Küppers et al., 2019). Experimental studies made by 
(Küppers et al., 2020) have shown that the material composition of sorting machines 
has no influence on the yield (amount of eject material discharged into the target 
fraction), while the yield decreases exponentially with increasing occupation density/
throughput rate. (Maisel et al., 2020) showed the effectiveness of plastics sorting 
can be increased if the particle size is within a standardized range and the different 
sorting technologies require different particle size ranges for efficient separation. But 
this work focuses more in the pre-treatment operation instead of the sorting process. 

Digitalization and automated processes have already been state of the art in 
many industry sectors for some years and were mainly used to reduce the need 
for physical work, making the processes more efficient (Sarc et al., 2019). The 
continuous development of machine learning technology, especially the use of deep 
learning methods to classify waste, opens new research possibilities. Zhang et al. 
(2022) conducted in his study a deep learning, multi-label waste classification model 
of multiple waste. (Maier et al., 2021) developed an image processing approach in 
multi-object tracking in sensor-based sorting to achieve a more precise control over 
physical particle separation. However, those works focused either on one factor or on 
the development of machine learning methods instead of sorting process. (Friedrich 
et al., 2023) created regression models for finding out the optimal operation point 
on the sensor-based sorting based on the 3D plastic samples composition and 
the throughput rate. Kroell (Kroell et al., 2022; Kroell et al., 2024) developed an 
automatic assessment of sorting processes and digital twins to optimize sorting 
plants. To monitor the results of the sorted material, the authors developed a NIR 
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based model. However, installing an extra NIR module for monitoring is expensive. In 
our present paper, we propose and discuss the application of a low-cost alternative, 
namely a web-camera, to monitored the sorting results.   

3 Material and Methods

3.1 Sorting Machine
The experiments were carried out on a customized, modular sorting machine at the 
Fraunhofer Research Institution for Materials Recycling and Resource Strategies 
IWKS, located in Germany (Fig. 1a). The sorting machine consists of several 
modules on pilot scale that can be configured and operated independently to 
simulate industrial sorting procedures. The zig-zag air separator and the flip-flow 
screen allow for classification based on particle weight and size, whereas magnetic 
and eddy-current separators separate metals. The most versatile module is the 
sensor-based sorting machine Varisort Compact (Sesotec), which was the focus of 
the present work.

a)  
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b)  

Fig. 1. (a) Waste sorting system at Fraunhofer IWKS; and (b) schematic drawing of the working 
principle and sensor arrangement of the multi-sensor system. NIR = near infrared.

Fig. 1(b) shows the schematic drawing of the working principle and sensor 
arrangement of the multi-sensor system. The multi-sensor system includes an 
inductively working electromagnetic sensor to detect conductive materials, such as 
metals; an NIR sensor in the range of 1325 nm to 1900 nm to classify polymers, 
such as plastics, or cellulose in paper and wood: and two line-scan cameras to 
capture RGB color images of the materials. 

A conveyor belt accelerates the objects to be sorted by the multi-sensor system. The 
conveyor belt is 1,024 mm wide, 2,538 mm long, black and can reach a maximum 
transport speed of 2.5 m/s. The objects to be sorted pass the sensors and they 
are released from the conveyor belt at its end, leaving in a horizontal trajectory. 
Compressed air, which can be adjusted from 0 to 5 bars, is used to eject particles 
meeting defined sorting criteria from the rest of the stream. The pass and eject 
fractions then fall into separate chutes and onto additional output conveyor belts. 
Additionally, for this work, two webcams were installed above the output chutes to 
enable an automated evaluation of the sorting results.
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3.2 Material
Samples of lightweight packaging waste were provided by a sorting facility, which 
sorts separately collected recyclable packaging waste in Germany. HDPE and PP 
are common plastic types in packaging (Plastics Europe DE, 2022). As was stated 
above, these polymers have similar densities and cannot be sorted by sink-float 
density separation. However, they have different characteristics in the NIR spectral 
range and can be sorted by NIR spectroscopy. To visually evaluate the results of 
the sorting trials, the different types of polymers were made distinguishable through 
their color as follows: blue for HDPE and white for PP (Fig. 2.  Samples used in 
the experiments.  HDPE (blue) and PP (white) in the three different particle sizes.). 
Since the material used for the trials originated from real collected waste streams, 
the colors of the materials were not uniform, especially in the case of the blue PP 
materials, which ranged from dark blue to light blue. 

Considering the design of the sorting machine and its proposed operating window 
for sorting particles between 5 mm and 50 mm, the materials were prepared in three 
groups concerning their particle size: large (30 mm to 50 mm), medium (10 mm to 
30 mm) and small (5 mm to 10 mm), see Fig. 2. The materials were divided into 
three samples, namely, samples 1, 2, 3 representing large, medium and small sizes, 
respectively. Each sample contained 250 g of PP (white) and 250 g of HDPE (blue). 
Material in a sample is considered uniform in size. 

30 mm – 50 mm        10 mm – 30 mm      5 mm – 10 mm

Fig. 2.  Samples used in the experiments.  HDPE (blue) and PP (white)  
in the three different particle sizes.
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3.3 Methods
This research focuses on the sensor-based sorting machine. Considering the state 
of the art and the features of the sorter, four parameters of the sensor-based sorter 
were investigated, namely the air pressure for pneumatic ejection, the material sizes 
and the position of the separating vertex and the occupation density on the conveyor 
belt. Further, the influence of these parameters on the sorting results was evaluated. 
Thus, experiments were combined with digital tools and modelling approaches to 
find the relationships between these parameters and the resulting purity and yield 
of the process. In the following experiments, the sorting procedure was carried out 
based on the NIR spectroscopy. 

3.3.1 Experimental procedure
Various series of experiments were carried out and each experiment was repeated 
three times. In each experiment, one of the samples, consisting of HDPE flakes 
(blue) and PP flakes (white) of a specific particle size range was fed through the 
sensor-based sorting machine. The machine was set up for an NIR detection of 
HDPE, which was then targeted by the pneumatic ejection. The fixed speed of 
the conveyor belt is 1.78 m/s as per direct measurement. The experiments can be 
divided as follows:

1. Air pressure (1-5 bar) for pneumatic ejection and particle size (large: 30 mm 
– 50 mm, medium: 10 mm – 30 mm and small: 5 mm – 10 mm).

2. Horizontal and vertical position of the separating vertex. 

3. Occupation density and overlapping particles for the input streams on the 
conveyor belt.

To evaluate the influence of those parameters on the sorting results, purity and yield 
of the target material were monitored using cameras and digital scales.

3.3.2 Assessment of the influencing parameters
Air pressure for pneumatic ejection in the sorter was adjusted manually from 1 to 
5 bar. To evaluate the influence of the particle size, experiments were conducted 
in all three sample groups. 

A mathematically-based model was constructed to further explore the impact of 
the position of the separating vertex. In this model, the trajectory of the material 
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between leaving the conveyor belt and the upper edge of the separating vertex 
was analyzed. When an object is accelerated through the conveyor belt of a sorting 
machine and leaves it in horizontal motion, the dropping process is simplified and 
described as equation (1): 

conveyor belt of a sorting machine and leaves it in horizontal motion, the 

dropping process is simplified and described as equation (1):  

𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷 =
1
2

∙ 𝜌𝜌𝜌𝜌 ∙ 𝜌𝜌𝜌𝜌2 ∙ 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 ∙ 𝐴𝐴𝐴𝐴
(1) 

- 𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷:  the resistance force; 

- 𝜌𝜌𝜌𝜌: density of the medium, in this case is air, 1.225 kg/m3; 

- v: the speed of the medium in relation to the object; 

- A: the reference area, in this case is the particle size; 

- 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑: the resistance coefficient. 

The resistance coefficient is closely related to the shape of the object. And 

in this experiment, the material is cut into pieces and laid flat on the con-

veyor belt. Therefore, a relatively large value of 1.28 is selected. 

In this model, the last point of touch with the conveyor belt is seen as the 

origin of the coordinates. The top point of the separating vertex is repre-

sented by the red dot in Fig. 3. The separating vertex can be moved along 

the y-axis through an offset of a metal plate and rotated along the x-axis 

through flexing the plate structure. 

 
Fig. 3. The position of the separating vertex of the sorter: the red dot is the upper 

edge of the separating vertex, and the area of the yellow circle shows the areas area 

•	 FD: the resistance force;

•	 ρ: density of the medium, in this case is air, 1.225 kg/m3;

•	 v: the speed of the medium in relation to the object;

•	 A: the reference area, in this case is the particle size;

•	 Cd: the resistance coefficient.

The resistance coefficient is closely related to the shape of the object. And in 
this experiment, the material is cut into pieces and laid flat on the conveyor belt. 
Therefore, a relatively large value of 1.28 is selected.

In this model, the last point of touch with the conveyor belt is seen as the origin of 
the coordinates. The top point of the separating vertex is represented by the red dot 
in Fig. 3. The separating vertex can be moved along the y-axis through an offset of 
a metal plate and rotated along the x-axis through flexing the plate structure.
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Fig. 3. The position of the separating vertex of the sorter: the red dot is the upper edge of 
the separating vertex, and the area of the yellow circle shows the areas area for adjusting 

along the y-axis, with a clearer view shown in the upper right of the image.

The two related factors occupation density and overlap represent the most 
complex factors. Occupation density is the proportion of the conveyor belt area 
that is covered with material, whereas overlap is the ratio of object area covered 
by another object. To analyze these two factors, data from the RGB cameras in the 
sorter were combined with image processing. To calculate the occupation density, 
a Python script was written to count the covered pixels of the image. The image 
always possesses a black background due to the camera position. To reduce image 
noise, a threshold value of 10 was used. The image was then transformed into a 
binary image, in which objects were represented by a white value of 255.

The machine learning model YOLO (You Only Look Once) (Redmon et al., 2016) 
was fine-tuned with a customized dataset to detect the overlap of the input stream. 
The customized dataset includes around 200 images, which were collected from the 
RGB camera. Resizing of the images was used to reduce the quality of the image 
from the line scan camera to simulate the quality of the webcams. 

Although overlap in the input material stream can be identified by machine learning 
model, the direct calculation of the overlapping area and multilayer overlap is still not 
possible, since the images from the RGB cameras cannot see through the objects 
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and measure the covered area of the object beneath. Therefore, the Singling Ratio 
(SR) approach, presented by (Kroell et al., 2022), was used. The SR describes the 
percentage of covered area that is singled, i.e. that contains only one particle  (Kroell 
et al., 2022). However, the SR does not consider the multilayer overlap that often 
occurs in small or nearly 2D material. Thus, in this study, considering the similar 
density in the sample material and its 2D shape, the monolayer rate (MR) was 
defined as the single object ratio in the input stream and was calculated according 
to Equation (2): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠  ×  𝑡𝑡𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ×  𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑦𝑦𝑦𝑦

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
(2) 

𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 represents the detected single Area (Asingle) and 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 represent the 

mass of the input steams.  

Assessment of the sorting result 

To evaluate the sorting results, a color-based model with the support of two 

common webcams was built. The webcams monitored the conveyer belt of 

the eject and reject fractions. Utilizing the different colors of the sample ma-

terials, computer vision was used to calculate the area of pixels for each ma-

terial. To ensure the optimized value of the threshold, this model provides a 

user-customizable window to adjust the maximum and minimum value of hue, 

saturation and value respectively, adjusting the result dynamically. The purity 

and yield of the targeted materials were then estimated. The following are the 

definitions of purity and yield. In this study, the target material of HDPE was 

set as the eject fraction, and the sorting result was described as eject purity 

(𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚) and eject yield 𝐸𝐸𝐸𝐸𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚:  

𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 = 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 × thickness × density/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 (3) 

𝐸𝐸𝐸𝐸𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 = 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 × thickness × density/𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡  (4) 

𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟  is the area of the target material in eject fraction; 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 is the mass of 

the eject fraction; 𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 is the weight of the target material.  

All programming work was done in the Python programming language, since 

many of the required frameworks are provided in Python. Fig.4  presents an 

overview of the varied parameters and the methods used to assess them.  

Asingle represents the detected single Area (Asingle) and minput represent the mass of 
the input steams. 

3.3.3 Assessment of the sorting result
To evaluate the sorting results, a color-based model with the support of two common 
webcams was built. The webcams monitored the conveyer belt of the eject and 
reject fractions. Utilizing the different colors of the sample materials, computer vision 
was used to calculate the area of pixels for each material. To ensure the optimized 
value of the threshold, this model provides a user-customizable window to adjust the 
maximum and minimum value of hue, saturation and value respectively, adjusting 
the result dynamically. The purity and yield of the targeted materials were then 
estimated. The following are the definitions of purity and yield. In this study, the 
target material of HDPE was set as the eject fraction, and the sorting result was 
described as eject purity (EPm) and eject yield EYm: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠  ×  𝑡𝑡𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ×  𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑦𝑦𝑦𝑦

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
(2) 

𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 represents the detected single Area (Asingle) and 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 represent the 

mass of the input steams.  

Assessment of the sorting result 

To evaluate the sorting results, a color-based model with the support of two 

common webcams was built. The webcams monitored the conveyer belt of 

the eject and reject fractions. Utilizing the different colors of the sample ma-

terials, computer vision was used to calculate the area of pixels for each ma-

terial. To ensure the optimized value of the threshold, this model provides a 

user-customizable window to adjust the maximum and minimum value of hue, 

saturation and value respectively, adjusting the result dynamically. The purity 

and yield of the targeted materials were then estimated. The following are the 

definitions of purity and yield. In this study, the target material of HDPE was 

set as the eject fraction, and the sorting result was described as eject purity 

(𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚) and eject yield 𝐸𝐸𝐸𝐸𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚:  

𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 = 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 × thickness × density/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 (3) 

𝐸𝐸𝐸𝐸𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚 = 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 × thickness × density/𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡  (4) 

𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟  is the area of the target material in eject fraction; 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 is the mass of 

the eject fraction; 𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 is the weight of the target material.  

All programming work was done in the Python programming language, since 

many of the required frameworks are provided in Python. Fig.4  presents an 

overview of the varied parameters and the methods used to assess them.  

Arecy is the area of the target material in eject fraction; meject is the mass of the eject 
fraction; mtarget is the weight of the target material. 
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All programming work was done in the Python programming language, since many 
of the required frameworks are provided in Python. Fig.4  presents an overview of 
the varied parameters and the methods used to assess them. 

Fig. 4. Structure of the methods used for the assessment of the 
influences of different parameters on the sorting result.

4 Results

4.1 Results of Digital Methods
The original image of the input streams on the conveyor belt is shown in the Fig.5    
left. The noise-reduced and binarized image is shown in the right image of Fig.5  
and the white part represents the occupied area by the materials. The occupation 
density of the image shown is 7.5%.
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Fig. 5. Binary image processing of the input stream in the conveyor 
belt: left is the original image; right is the binary image.

After 300 iterations, the mAP (mean Average Precision)_0.5 of the fine-tuned YOLO 
model reached 0.83 and the average precision in the class of SR was around 0.90. 
The error was mainly caused by multilayer overlap of several objects. Fig. 6 shows 
the overlap detection results in three sample groups.

Fig. 6. Result of overlap detection in three sample groups: left to right: Samples 1-3.

Fig.7  presents an example of image processing applied to images of the output 
fractions. The left image is the original captured by the webcams, the middle and 
right images are the extracted blue and white areas, respectively. The result shows 
that HDPE (blue) and PP (white) could be mostly separated correctly. 
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Fig. 7. Image processing on the output fractions: left is the original webcam image, 
middle is the extracted blue area and right is the extracted white area.

4.2 Preliminary Results
4.2.1 Compressed air and material size
Fig.8  shows the results of the air pressure preliminary tests. The x-axis represents 
the value of the compressed air pressure at the valves. The differences in purity and 
yield varied for different particle sizes with increasing air pressure. The decrease in 
sample 1 (large particles size) is the most obvious, which attained the best purity, 
90%, at 2 bar of compressed air pressure and a reduction to 83% at 4 bar. In 
comparison, the reduction of purity in sample 2 and sample 3 is less when pressure 
increases. The reason may be that the objects hit the chute’s wall and are reflected 
into the wrong chute. Although the reaction of purity and yield to changes in the air 
pressure were not consistent across the groups, the trend was similar. In general, 
high purity and yield were attained at compressed air pressure levels between 1 
and 2 bar.

Furthermore, the results indicate that eject purity of medium-sized sample 2 is the 
best and small-sized sample 3 gets the worst eject purity and eject yield independent 
of the air pressure. 
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Fig. 8. Influence of air pressure on sorting performance in three particle size groups: 
(sample 1: 30 mm - 50 mm, sample 2: 10 mm - 30 mm and sample 3: 5 mm - 10 mm).

4.2.2  Separating vertex
The adjustment area of vertex positions in the sorter based on the statistical model 
were converted into x and y coordinates and they are depicted in Fig. 9 as blue 
dots. The coordinate information is shown in Fig 3. The black curve represents a 
resistance-free (i. e. without drag) motion curve of a particle. Since no object can 
pass over the black curve with its initial speed, even without air-induced drag, the 
positions of the vertex above the black curve are not relevant. The blue curve shows 
the theoretical trajectory of the motion for most of the samples. The small red dots 
are experimental values and are located below and adjacent to the blue curve. Since 
the vertex should be adjusted to closely below the trajectory of the particles, the 
optimal position of the separating vertex of used samples is shown as an orange 
star in Fig. 9.
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Fig.9. The trajectory of the material from conveyor belt to the separating 
vertex. The yellow star shows the optimized position.

4.2.3 Occupation density
Fig. 10 shows the occupation density on the x-axis and the reject purity on the 
y-axis. The dots show the measured data in experiments. Based on the experimental 
results, the probable regression curves are depicted as well. For each set of test 
samples, the eject purity decreased with increasing occupation density from above 
85% to around 65%, while the occupation increased from below 1% to about 8%. 

To prove the trend of decreasing eject purity with increasing occupation density, 
more experiments were conducted in example 2. The experiments showed that the 
eject purity is around 56% while the occupancy density reached 35%. The results 
confirmed the regression curve in Fig. 10.
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Fig. 10. Experimental results of the eject purity for different occupation densities.

Table 1 presents the experimental results of singling ratio with occupation density 
and eject purity for sample 2 (particle size 10 mm – 30 mm). As the occupation 
density increased, the monolayer rate decreased and the eject purity became 
worse. Such trend is consistent with the research of (Kroell et al., 2022), which also 
analyzed the occupation density and SR on the sorting performance.  

Tab. 1. Results of singling ratio with occupation density and eject purity in sample 2 (10 mm - 30 mm).

Occupation density Monolayer rate Eject purity
0.5% 84.4% 92.5%
0.6% 74.0% 91.2%
0.7% 83.2% 90.2%
1.8% 79.2% 75.7%
1.9% 84.6% 76.3%
2.7% 74.8% 75.1%
5.7% 78.2% 70.9%
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Occupation density Monolayer rate Eject purity
6.3% 77.2% 68.9%
7.7% 71.8% 65.9%

5 Conclusions and Outlook
Based on the literature review and the properties of the sensor-based sorting 
machine, four influencing factors for a sensor-based sorting were identified. They 
included the air pressure for the pneumatic ejection, the material size, the position of 
the separating vertex and the occupation density of the conveyor belt. An Al-based 
method for overlap detection, a statistical model for the position of separating vertex, 
and non-AI-based methods for detection of occupation density and the analysis 
of purity and yield of the output fractions were developed. Those methods were 
implemented to analyze the material flow in the conveyor belt and assist in the 
assessment of the sorting results. Various experiments were conducted in a pilot-
scale sorting machine. This paper shows the possibility of using machine learning 
and image processing methods to analyze sorting processes. 

The experimental results showed that the material size has a significant influence 
on the purity and yield of the targeted fraction. The sorting machine presented 
the best sorting result with a pressure of 2 bar independent of the material size. 
The position of separating vertex could be modeled with statistical model, which 
guided the adjustment of the sorter. The occupation density and overlap were highly 
correlated. Both parameters had a large influence on the eject purity. An increase of 
occupation density decreased the eject purity.

The experimental results were based on one specific sorting machine at pilot scale. 
Further experiments are necessary at full scale plants. The investigation of the 
occupation density was performed in a relatively small area, less than 35% of the 
sorting machine’s belt width. Further research with higher occupation densities and 
using other material types should also be considered.  
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1 Introduction
The mining industry is generally regarded as a slow adaptor when it comes to digital 
technologies; however, many sector experts also recognize that it could radically 
reshape their day-to-day operations. 

A significant opportunity to reduce energy and emissions sits within comminution, 
which is the process that turns big rocks into small particles. This process is 
responsible for at least one-third of an average mine’s energy use and CO2 emissions 
and globally consumes around 3% of the world’s electrical power (Allen, 2021).

Apart from rethinking flowsheets and replacing traditional circuits with more energy 
efficient alternatives, such as high pressure grinding rolls (HPGR) and vertical stirred 
mills, there’s more to be explored in efforts to reduce the circuit’s footprint. One of 
the most recently discussed developments in the field of automation, optimisation 
and digitalization is the concept of digital twins (DT). While some industries have 
been early adopters of digital twin technology, the mining and minerals processing 
industry is still largely defining its scope, framework and dedicated outcomes.

Key to implementing digital twins is the mining industry’s ongoing sustainability 
agenda, as well as equipment and process optimisation with regards to availability, 
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performance and quality, which is commonly and industry-wide defined as 
operational equipment efficiency (OEE).

2 HPGR-based comminution circuits 
There is a common industry consensus that HPGRs are firmly cemented in making 
comminution processes more efficient, while delivering high equipment availability. 
With lowest energy consumption and no water or grinding media required, 
typical operating costs for HPGR-based circuits are over 20% lower compared to 
conventional semi-autogenous-ball mill-crusher (SABC) circuits, while also reducing 
comminution CO2 emissions by 30%. (Lovatt et al, 2023)

Greenfield mines are increasingly located in remote regions, while the ore bodies are 
becoming less homogenous and more complex to process. Under these challenging 
conditions, Weir Minerals has, instead, opted to minimise operational complexity. 
The design fundamentals that underpin its Enduron® HPGR provide greater 
flexibility and, ultimately, more operational certainty and equipment availability.

However, to provide increased control of the HPGR’s health and operational 
performance, a combination of physical and soft sensors connected to an online 
monitoring platform provides remote operators with the intelligence to make 
impactful decisions and assure adequate supply of performance consumables. The 
introduction of AI-based algorithms, combined with a comprehensive operational 
database, provides automatic recommendations to the operator, allowing them to 
weigh up the need to meet their production targets, while not overstretching the 
machine before scheduled maintenance shutdowns.

3 Weir Minerals’ Digital Platform
Weir Minerals’ digital offering, includes an intelligence platform with cutting edge 
applications and tools, including DTs, which can align to individual business goals. 
Alongside performance, health and sustainable operational objectives, Weir Minerals 
is strongly focused on working with its customers to become a leader in reaching its 
zero emissions objectives. Operators can achieve true end-to-end integration with 
their overall mining process by leveraging recommendations from their intelligence 
platform (Figure 1).
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Fig. 1. Weir Minerals’ redefined flowsheet, schematically including digital 
technologies for optimisation of availability, performance and quality (OEE).

Connected equipment – in this case HPGRs – form the foundation of gathering 
insights about the equipment and the related processes. Weir Minerals’ recently 
released digital platform for HPGR equipment underpins further optimisation 
approaches on both an equipment and process level. This then provides insights 
and support to the customers, allowing them to make decisions based on their 
priorities with regard to achieving their individual business goals (for example, but 
not limited to availability, performance, quality and sustainability).

Figure 2 visualizes a digital platform example of a large, multi-staged HPGR 
configuration.
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Fig. 2. Weir Minerals’ digital intelligence platform: Landing Page (site level)

The landing page of the application provides an overview of critical warnings and 
alarms, enabling the operator to manually benchmark equipment. Furthermore, a 
summary of critical alarms and bad actors (on the equipment level) are shown, which 
enables Weir Minerals as an OEM to proactively support customers to optimize the 
equipment by checking each equipment’s status, recommending the adjustments 
of setpoints and other operational parameters. For example, if alarms are being 
raised on a piece of equipment’s hydraulic system, over an extended period of time 
(days/weeks/months), the customer can be proactively approached to check the 
equipment in order to address the underlying issues and, ultimately, ensure a safe, 
continuous and efficient operation. 

The equipment page (Figure 3) visualizes the current status of one particular piece 
of equipment, which includes the status of the HPGR, as well as actual real-time 
data (right hand side). 
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Fig. 3. Weir Minerals’ digital intelligence platform: Equipment Page

All live data is frequently being updated; thus, it provides remote service engineers 
or monitoring room engineers with a clear picture of what is happening on site. This 
puts the Weir Minerals’ monitoring room engineers into a position where they can 
access the information that normally only customers will see on site. 

Within the equipment section the user also benefits from a maintenance scheduling 
assistant. With this assistant the user of the intelligence platform receives dynamic 
updates on when the optimal time the next maintenance activities should be 
scheduled. 

Another useful piece of functionality is the user’s ability to analyse time series data 
(Figure 4). This functionality can include multiple data streams.
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Fig. 4. Weir Minerals’ digital intelligence platform: One example of the analysis 
capabilities (Time Series Analysis) to benchmark machines on mine sites.

This can include multiple attributes and time series data from one machine, like 
shown in the above example, or it can contain data streams from multiple pieces 
of equipment. 

From an (end-user) operator perspective, this enables benchmarking of various 
pieces of equipment. For Weir Minerals as an equipment manufacturer, this enables 
it to compare various machines in different operations, categories and regions. 

In the example shown in Figure 4, the feed bin level, speed and torque of both HPGR 
rollers are shown. Furthermore, the application in current release has functionality 
to track maintenance and events, histogram functionality, as well as alarm analysis, 
which supports operators and Weir Minerals to identify “pain points”. This leads 
to further potential improvement and proactively makes recommendations to the 
operator to deliver improved circuit efficiency, while also allowing them to manage 
the asset effectively in the lead up to the next scheduled maintenance shut down.

While not yet completely implemented in the current release, the integration of 
particle size distribution (PSD) cameras will be made available in the near future. 
As the comminution and recovery circuit are interdependent, both over and under 
grinding can have a profound impact on mineral recoveries. Whereas, historically, 
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recirculating loads and power consumption were used to estimate grind size 
performance, having optical sensors integrated in the overarching monitoring 
platform as a tangible control lever offers operators more accurate input on the 
overall circuit performance. 

Fig. 5. Weir Minerals’ digital intelligence platform: Integration of PSD information for process optimisation.

Figure 5 visualizes the camera system recording the PSD over time, as well as 
additional process parameters, like volume, belt speed and P80. The combination of 
internal HPGR parameters with additional process parameters, like PSD, paves the 
way to further optimisation in the future control of HPGRs with regard to performance 
and quality (as two pillars of the OEE definition).

The objective is to be proactive in the use of user data and customer feedback. The 
designs and user journeys outlined above are under constant review to ensure that 
the users can easily find their desired functionality, gain insights, and navigate the 
platform. 
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4 Conclusion and Outlook
Mining is a series of inter-related processes, often beginning with blasting/excavation, 
then transporting the material, crushing, grinding and milling it to produce a final 
product. But equipment and processes are typically analysed in isolation, rather than 
being evaluated holistically; downstream effects are not considered in upstream 
equipment and vice versa. For example, the HPGR’s overall performance influences 
its up- and downstream processes; therefore, it needs to work intelligently with 
other equipment in the flowsheet to maximize OEE. This holistic view of process 
optimisation provides an opportunity to significantly reduce the environmental 
impact of mining. 

Weir Minerals’ digital platform builds the foundation for future process optimisation. 
The platform provides insights to every operator and provides them with the tools 
to make considered decisions based on tangibles, rather than assumptions. This 
facilitates increased availability, performance and product quality, while also 
decreasing the overall environmental footprint. Besides that, Weir Minerals is actively 
developing technologies to increase the amount of insights and to substantiate the 
automated decision-making for process optimisation. 

The examples highlighted in this paper are hard sensor systems (e.g. automated 
tyre wear monitoring and automated cheek plate wear monitoring system). 
Additionally, Weir Minerals’ digital team is collaborating with universities (like the 
Advanced Mining Technology Center in Chile) to develop soft sensing capabilities. 
This will enable access to information for process optimisation based on operational 
parameters without directly measuring the dedicated attribute with hard sensors. 

References
Ivka Lovatt, Michael Becker, Brian Putland, Radford & J. Robinson., (2023) Trade-

off realities in HPGR vs SAG milling - A Practical Comparison of Tropicana and 
Gruyere Comminution Circuits, SAG 2023, Vancouver, Canada

Marc Allen., (2021) Mining energy consumption 2021, A high-level study into mining 
energy use for the key mineral commodities of the future



175

From Hyperspectral Edge Computing to Offline Algorithm Based Feedback-loops. An Update.

From Hyperspectral Edge Computing to 
Offline Algorithm Based Feedback-loops. 

An Update.

Matthias Kerschhaggl*1

1 EVK DI Kerschhaggl GmbH, Raaba, AUSTRIA

* Corresponding Author: matthias.kerschhaggl@evk.biz

Keywords: hyperspectral data processing, sorting classifiers, training and inference, data and information

Abstract
In this update on the previously presented topic, „From Hyperspectral Edge 
Computing to Offline Algorithm-Based Feedback-Loops,“ we delve deeper into 
the ever-evolving landscape of hyperspectral systems and their transformative 
applications in data-driven decision-making. Building upon the foundations laid 
out in the original presentation two years ago, we explore recent insights and 
developments in this field.

The core premise of hyperspectral systems remains intact: the fusion of edge 
computing technology with hyperspectral and other multimodal data streams, enabling 
rapid data reduction in order to extract key data for informed decision-making, 
particularly needed in industrial contexts like sorting. However, our understanding of 
this field has matured, and new developments are shaping its evolution. To fully exploit 
the potential of a broad bandwidth hyperspectral data stream, the development of 
sophisticated classification and regression algorithms is essential. These algorithms 
form the basis for extracting crucial insights and maximizing the value of the data.

This presentation will showcase the latest outcomes derived from a closed 
hyperspectral data processing loop, from the acquisition of industrial data, to machine 
learning-based algorithm training, to in-line and real-time extraction of key features.
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Abstract
Enhancing the recyclability of plastic packaging film waste (PPFW) is necessary 
to increase Austria’s recycling rate, considering its substantial contribution of 
150,000 tons to the annual 300,000 tons of plastic packaging waste. Currently, 
PPFW are thermally recovered due to challenges in distinguishing mechanically 
recyclable monomaterial films from multimaterial films. This study employs machine 
learning models utilizing spectral fingerprints recorded in transflection to classify 
PPFW inline into monolayer and multilayer films. Hardware adaptations, which 
include the implementation of a copper reflector to increase spectral quality and 
enable measurement in transflection, are shown to increase spectral quality. Further, 
feature selection methods are used to identify important spectral ranges, optimizing 
the model’s efficiency by reducing complexity and prediction time with minimal loss 
in accuracy. The resulting models demonstrate an 85% prediction accuracy on 
unseen specimens recorded in line with minimal prediction latency, showcasing 
the feasibility of inline applicability for sorting aggregates with minimal hardware 
adaptations to enable measurements in transflection.
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1 Introduction
Waste management facilities for sorting Plastic Packaging Waste are faced with 
frequently changing inhomogeneous input material. One of these input fractions, 
which are currently mainly ejected during preliminary input treatments with ballistic 
separators or screens and then thermally recovered, are plastic film packaging. 
Plastic film packaging amounts to roughly 46% of the plastic packaging waste 
that is annually put into circulation in Austria (Van Eygen et al., 2018). Therefore, 
the settings of waste sorters/sorting units need to be adapted to allow for the 
separation and subsequent recycling of this fraction. Including these fractions in 
the circular economy of polymers, could be beneficial for reducing abiotic resource 
consumption and CO2 emissions caused by the production of virgin polymers (Koinig 
et al., 2022b). One reason for the lack of recycled plastic packaging films is the 
complexity they present in Near Infrared (NIR) sorting (Chen et al., 2020). The 
characteristics which make them ideal for packaging goods, like thin thickness, low 
weight, and the possibility to combine different polymers to cover a vast array of 
packaging requirements leads to suboptimal performance during sorting operations 
(Tartakowski, 2010). 

This work shows an approach to adapt an industrial scale NIR sorting rig employing 
transflection to optimize yield, and purity. For this, different reflective background 
surfaces were evaluated for their respective effect on spectral quality. The evaluated 
reflectors included copper, aluminum, and gold. These materials were chosen for 
their reflective properties in the relevant NIR wavelength range (Cui, 2011). 

The proposed changes in the NIR sorting aggregate counteract this impediment 
and allow for the characterization and ejection of multilayer films. This enables the 
creation of monolayer and multilayer fractions. The clean monolayer fraction could 
then be used in mechanical recycling while the multilayer fraction can be used as 
feedstock for chemical recycling methods. 
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2 Methods and Materials
This section describes the used NIR sorting aggregate and its adaptation to allow 
for image acquisition in transflection. Further, the principle behind transflection and 
its effect on spectral quality is explained. Additionally, the used machine learning 
model to classify these enhanced spectra is described. Because the inline use of 
these models requires short inference latency, the method to reduce the number of 
input features to decrease inference latency is explained.

2.1 Film Packaging Specimen
The film specimen used in this trial were collected from the lightweight packaging 
waste (LWP) collection system in Austria, called the “Yellow Bag”. No prior washing 
or pretreatment of the specimen was performed. In total 633 films were used in 
these trials for model creation and subsequent testing for its prediction accuracy. 
The specimens’ materials included monolayer films made from polyethylene (PE), 
polypropylene (PP) and polyethylene terephthalate (PET). The multilayer specimen 
combined these polymers and in addition polyamide (PA) and compatibilizers and 
other barrier layers to ensure gas or vapor impermeability. The films were separated 
into a training set used in the creation of the classifier and a second, independent 
testing set for in line validation on the sensor-based sorting aggregate of the created 
model on unseen specimen. The specimen were conventional post-consumer 
packaging films. The material composition of the specimen was analyzed prior 
using Fourier-transform infrared spectroscopy (FTIR) measurements employing a 
Spectrum Two FTIR spectrometer (Perkin Elmer) with a Zn/Se crystal with diamond 
tip. The spectral range of the spectrometer is 650 cm−1 to 4,000 cm−1.

2.2 Sensor-Based Sorting Aggregate
The sensor-based sorting (SBS) aggregate used in this study is a chute sorter. 
This aggregate allows access to the data stream created by the NIR smart camera. 
The NIR camera is an EVK G2 Hyperspectral Imaging camera, which allows for 
spectral acquisition in a spectral range from 900 nm to 1,700 nm in a resolution of 
312 pixels over the working width of 50 cm and 220 spectral points over the stated 
spectral range. This camera is a line sensor working in brush-broom acquisition 
yielding between 450 and 500 lines per second. Figure 1 shows the SBS aggregate 
used in this work and a functional schematic of its working principle. Alongside the 
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NIR camera an additional camera working with visible light (VIS) is included in the 
experimental setup. This camera enables the sorting using colors.

Fig. 1: Sensor based sorting aggregate used in this work and 
a functional schematic of its working principle

2.3 Recordings in Transflection
Preliminary research has shown that the spectral quality of film packaging is 
inadequate for classification in NIR when recorded in reflection. This issue may be 
solved by changing the measurement geometry to transflection (Chen et al., 2020; 
Koinig et al., 2022a). Therefore, a reflector, which allows for a second pass through 
of the radiation and minimizes the amount of radiation lost to transmission, has been 
implemented. The reflector is made of copper as this material evidently yields high 
reflectiveness in the NIR spectral range while exhibiting no spectral fingerprint of its 
own (Koinig et al., 2022a).  Furthermore, copper is resilient to corrosion and relatively 
cheap when compared to other materials with better reflective characteristics like gold 
(Cui, 2011). To compare the increase in spectral quality, reference measurements 
have been conducted. This allowed for a comparison between the spectra yielded 
by reflection measurements and transflection measurements. As references glass, 
commonly used in chute sorters, and black polymers, commonly used for conveyor 
belts, were implemented. The increase in spectral quality is essential for further 
classification of the film specimen, as it allows for the characterization of multilayer 
films. Figure 2 shows the principle of transflection measurement of film packaging. 
It demonstrates that the reflector allows for a second pass through the specimen, 
increasing the interaction between the film specimen and the radiation Thereby, 
the amount of information yielded by the spectra is increased while simultaneously 
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reducing the loss of intensity to transmission. The spectral acquisition in this work 
was performed using EVK Helios Optimizer Version 3.4.2017.1.

Fig. 2: Functional schematic showing the principle of transflection measurement

2.4 Machine Learning Classification
The increased spectral quality can further be used as the basis for creating machine 
learning models which are capable of distinguishing monolayer from multilayer films, 
irrespective of the actual material composition. This is to counteract the necessity for 
creating large spectral databases to cover the vast number of possible combinations 
of layer composition. All computations necessary for this work were performed in 
MATLAB, Version 9.13.0.2105380 (R2022b) Update 2 on a workstation equipped 
with moderate hardware. This workstation does not have a dedicated graphics card, 
so all computations were performed on the CPU. The CPU of this workstation is 
an Intel Core i5-4570 clocked at 3.20 GHz. No parallel computing was performed. 
These hardware limitations proved a great boon in the course of this work as they 
enabled to show the feasibility of inline application using the created model on 
limited hardware.
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2.4.1 Feature Selection with MRMR and PCA
Prior to the creation of a classification model, principal component analysis (PCA) 
was applied to the recorded spectra to gauge the predictive value of the spectral 
data. This PCA was performed gauge when there was sufficient information present 
in the data to  feasibly distinguish between monolayer and multilayer films. The PCA 
results were analyzed based on the resulting Pareto distribution of the explained 
variance in the data by the individual principal components (PCs).

After this initial assessment, further analysis of the resulting loading plots of the first 
three PCs were conducted. This was done to gauge the predictive value of individual 
spectral ranges for the classification task at hand.

To increase the fidelity in this feature ranking, feature selection for classification 
using the minimum redundancy maximum relevance (MRMR) algorithm was 
performed. The MRMR algorithm is a feature selection technique that identifies 
the most informative features by maximizing their relevance to the target variable 
while minimizing redundancy among selected features (Ding et Peng, 2005). Initially 
developed for genetics, it proved of high value when ranking spectral feature for the 
task at hand (Koinig et al., 2023). The results of these two feature selection methods 
were combined to determine the number of features necessary for classification and 
to subsequently reduce the inference latency for each classification to make inline 
use of the classification model feasible.

2.4.2 Creation of Machine Learning Classifier
Various classifiers were created and compared for their inference latency and 
prediction accuracy. Of these, a decision tree and a shallow neural network have 
been selected for further analysis regarding these metrics (Koinig et al., 2022c). After 
this comparison the shallow neural network has been selected for the appropriate 
classification model. The architecture of the neural network consisted of the fully 
connected layers with a layer size of 10. After parameter optimization, a rectified 
linear unit (ReLU) was chosen as fully connected layer activation function. The 
output layer activation function was by default performed with Softmax. To gauge 
the resulting accuracy with a reduced number of input parameters, the training and 
testing step has been repeated with each number of input parameters. The input 
layer size coincided with the number of input parameters chosen in the feature 
selection. The inference latency for each of these steps and the resulting accuracy 
on an unseen testing set has been recorded for further evaluation. A split of 80% 
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training data and 20% testing data was performed when creating these models 
following current standards shown to be good practice when creating a training and 
testing set and yielded good results in existing trials when performing classification 
on film packaging specimen (Nguyen et al., 2021; Koinig et al., 2023). To limit 
overfitting, a k-fold cross validation was performed with 5 folds. The training set 
consisted of 326 specimens. Table 1 shows the main polymer composition and 
number of training specimens.

Tab. 1. Main polymer composition and number of training specimen

Material

PE PP PE
T

PE
-P

P

PE
-

PP
-P

A

PP
-P

A

PP
-

PE
T

PE
-P

A

PE
-

PE
T

nObjects 14 9 3 73 3 6 17 92 109

2.5 Inline Classification with Trained Classifier
The inline testing of the prediction accuracy with the trained classifier was performed 
with live data acquired from the NIR sensor via the Gigecam Interface. The live data 
was pre-processed using a normalization with z-Score and a numerical differentiation 
using  gradient and normalization functions integrated in MATLAB. The data was 
then further processed to eliminate background pixels using a thresholding method 
which classifies all pixels under a given intensity as background. The remaining 
pixels were then classified using the trained neural network. The spectra were 
recorded with the specimen in motion. This approach was chosen to mimic the 
condition that would be prevalent when sorting on an industrial scale. This allows to 
gauge the robustness of the model to changes in the spectral acquisition resulting 
from changing environmental condition which cannot be reproduced when statically 
sorting prerecorded spectral images. 
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3 Results
This chapter describes the results obtained during the experimental phase of this 
work. Details are given on the achieved improvements in spectral quality and the 
resulting classification accuracy and inference latency of the machine learning 
classifier with reduced input parameters after feature selection. Further, the ranking 
of the individual features is given resulting from the PCA and MRMR feature 
selection.

3.1 Improved Spectral Quality
Figure 3 shows the changes in spectral quality of a PE film specimen. The spectra of 
the recorded PE film in transflection specimen have increased fidelity in the relevant 
spectral regions at 1,100 nm and 1,300 nm. Here the characteristic peaks and 
troughs have increased resolution and the relative height to rest of the spectrum. 
Furthermore, the spectral variability has decreased. This is shown by the first 
standard deviation of the specimen´s spectra. In addition, sinusoidal interference 
that stem from the interaction of the NIR radiation wavelength and the material 
thickness (Jeszenszky et al., 2004) could be decreased. This substantial increase 
in spectral quality is the basis for the creation of a robust classification model. With 
the gain in information content, minute differences in the spectra become more 
pronounced and the spectra are less susceptible to noise.
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Fig. 3: Comparison of spectral quality of a PE film specimen when 
recorded in reflection (top) and transflection (bottom)
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3.2 Definition of Spectral Features with Minimum Redundancy and 
Maximum Relevance with MRMR and PCA

Comparisons of monolayer and multilayer film spectra using PCA show a distinct 
difference in the spectra of these classes which can allow for classification using this 
increased level of abstraction. With the changed measuring setup, these overlaying 
spectral differences are revealed. The PCA conducted on the spectral data showed 
that approximately 70% of the variance in the data set can be explained by the 
first three PCs. Figure 4 shows the resulting PCA loading plots and the MRMR 
feature scores. The loading plots show high absolute weights for the spectral regions 
between 1,178 nm and 1,300 nm and further for the spectral region of 1,365 nm 
– 1,428 nm. These spectral regions represent the most abundant polyolefins in 
film packaging. Because through and peak heights correlate with the thickness 
of the material at hand, the heights of the throughs and peaks in this region is 
lower in multilayer films than in monolayer films. This results in the comparatively 
lower thickness of the polyolefins in a multilayer film. The MRMR score supports 
this finding and further yields high scores in higher spectral ranges. In addition to 
the important regions mentioned above, high feature scores were attributed to the 
spectral ranges at 1,490 nm, 1,552 nm, and 1,615 nm. These results show that 
the thickness differences in polymer films can be used to distinguish monolayer 
films from multilayer films. In addition, wavelengths in higher regions contain further 
information. This information may be independent from the material composition 
itself but caused by optical effects due to the transition of the NIR radiation from 
one layer to another layer with different optical densities and the presence of 
compatilizers to allow for the lamination of different polymer films. Regarding the 
model creation these results allow for a reduction of features in accordance with their 
ranked prediction values. This enabled the reduction of features to be evaluated for 
each classification which in turn reduced inference latency.
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Fig. 4: Results of spectral ranking using PCA loading plots and the 
MRMR algorithm and the thus calculated feature scores

3.3 Reduction in inference latency
According to the ranking of features, the classifier has been trained repeatedly with 
an increased number of features. The resulting inference time of a test set consisting 
of 3,000 spectra and the resulting prediction accuracy have been recorded. Figure 5 
shows the resulting inference latency and prediction accuracy of the neural network 
classifier. The prediction accuracy rises strongly with the increasing number of 
predictors. The cutoff point was derived from the gradient of the accuracy. The point 
at which the gain in prediction accuracy was minimal in comparison to the incurred 
time cost was calculated. This method yielded an optimal number of predictors of 
83, which was then used to train the classification model for later inline trials. The 
resulting prediction accuracy of the training data could be maximized while the 
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prediction latency could be reduced by about two thirds enabling the model to be 
deployed inline at the NIR sorting aggregate. 

Fig. 5: Resulting inference latency and prediction accuracy of the neural 
network classifier with increasing number of predictors and derived cutoff point 

at optimal value according to the gradient of the prediction accuracy

3.4 Inline Prediction Accuracy of Trained Classifier
The inline classification trials showed that the model copes rather well with new data 
acquired from the sensor. This is shown by the confusion plot in Figure 6. With a 
prediction accuracy of 85% of all classified spectra the model performed reasonably 
well. One issue was the high misclassification rate of multilayer as monolayer. To 
clarify this, the classification results have been analyzed for each material class. The 
film specimens were grouped according to their main polymer composition and the 
achieved prediction accuracy was then calculated anew. This showed that only 22% 
of PEPP films were classified correctly. The second class which caused problems 
was the PPPA fraction, which was correctly classified in 33% of all specimens. 
These materials reduced the overall prediction accuracy and need to be further 
examined to increase the prediction of the 2D fraction. 
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Fig. 6: Confusion Matrix showing the classification errors of the model for the two classes monolayer and 
multilayer and a bar chart showing the results in regard to the main composition of the film specimen

4 Discussion
This chapter aims at further discussing relevant issues that arose during the 
presented work. These issues include the application of transflection measurements 
on a belt sorter and the low prediction accuracy of PEPP and PPPA films.
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4.1 Application of Transflectance on Belt Sorters
As the implementation of a reflector for transflectance measurements on a chute 
sorter is comparatively easy and has been shown to increase spectral quality, 
this approach should further be applied to belt sorters, as these sorters are far 
more common in the field of waste management. To answer this question, multiple 
solutions have been proposed/assessed during this work. One would entail the 
implementation of a copper reflector band over the belt. This would be a simple 
implementation but greatly depends on the circumstances and type of the belt sorter 
in question. A more commonly applicable solution could be the usage of belts, which 
are inherently reflective in the NIR spectrum. This could include belts made from 
metals as which could enable transflection measurement. Another solution would 
be conventional polymer bands made from materials that allow for some reflectivity 
of the NIR radiation. One example are non-carbon black colored conveyor belts as 
these allow for some reflection. These questions have not yet been answered but 
are subject to current research.

4.2 Low Prediction Accuracy of PEPP and PPPA films
PEPP films are an example of a challenging multilayer composition. These polymers 
are easily distinguishable in spectral images of 3D materials (Wu et al., 2020). 
However, the low spectral quality of film specimen in comparison to 3D materials 
obscures the differences between these materials especially when one of the two 
components is present in low thickness. However, the implementation of a second 
sorting model, which is primarily trained to classify PEPP films from a monolayer 
fraction has shown promise to increase the classification rate of PEPP films. 
PA leads to complications in the extrusion phase due to its incompatibility and 
comparatively high melting point, necessitating compatibilizers to achieve useable 
mechanical properties (Czarnecka-Komorowska et al., 2021). Excluding this fraction 
with NIR is difficult however due to the low thickness of PA layers in multilayer 
films. As the expression of characteristic peaks is correlated with the materials 
thickness, the minor component is near invisible in the NIR spectrum (Masoumi et 
al., 2012). This issue could be resolved by implementing Fast Fourier Transformation 
spectral enhancement. By evaluating the Fourier Components of the spectrum, 
the Fourier components contributing noise can be eliminated and the spectrum 
can be reconstructed from the relevant Fourier components only (Koinig et al., 
2022c). At the moment this process is rather cumbersome and involves high levels 
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of human input to determine the relevant Fourier components for reconstruction. 
Thus, automation is necessary prior to inline application.

5 Conclusion
The results of this work showed that the spectral quality of film packaging can be 
increased with minimal adaptation of existing hardware on chute sorters and that 
existing methods of feature selection and machine learning are capable of sorting 
monolayer from multilayer films with comparatively low computing power. This work 
further opened two research questions regarding the implementation of transflection 
measurements on belt sorters and the issues regarding the classification of PPPA 
films. The presented work showed the possibility of including the film fraction in the 
recycling loop. This would enable the use of a fraction which is hitherto primarily 
thermally recovered. The inclusion of film packaging as an input fraction for 
mechanical and chemical recycling would increase the recycling rate of LWP waste, 
improve the circular economy of polymers and create a feedstock for chemical 
recycling processes that are currently under development.
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Abstract
Sustainability is undoubtedly one of the most important goals in modern society 
and has a major impact on economic and political decisions. One of the strategies 
towards sustainability is the European Green Deal. A key policy initiative that 
determines the regulatory landscape supporting the European Green Deal is the 
Circular Economy Action Plan (CEAP) (EC, 2020), whose objective is to reduce the 
EU’s consumption footprint and double its circular material use rate in the coming 
decade, while boosting economic growth. Specific actions were launched in several 
areas, including electronics and ICT1, packaging, plastics and textiles. An important 
segment of a circular economy, especially in waste management, is the sorting and 
recycling of materials. To raise levels of high-quality recycling, improvements are 
needed in waste collection and sorting. 

The sensor systems currently available on the market for sorting plastics in 
waste management largely rely on near-infrared (NIR) and short-wave infrared 
(SWIR). However, the sorting of black plastics, including those manufactured in 
the automotive field, remains problematic with these systems. The task of sorting 
these black plastics from the shredder light fraction poses a demanding challenge 
to sorters.

1  Information and communications technology
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As part of the Fraunhofer lighthouse project »Waste 4 Future« (W4F), which deals 
with the holistic improvement of plastic recycling, an active thermography system 
for distinguishing different plastic materials was developed. In this context, three 
black materials from the shredder light fraction were investigated on a running 
conveyor belt. The sample set consisted of ten defined samples each of the material 
polypropylene glass fiber (PP-GF) as well as two polyamide glass fiber materials, 
namely PA6-GF and PA66-GF. The samples were heated up by using an infrared 
heater. An infrared camera mounted at a fixed distance above the conveyor belt 
was able to record the cooling curve of the samples over time. Due to their different 
heat conduction properties, different materials should have different heating, as 
well as cooling characteristics. By analyzing the cooling curves, it was possible to 
identify characteristic patterns in different materials. Feature extraction enabled the 
quantification of the observations, which were then processed by machine learning 
algorithms. Using three samples per material as validation data, a pixel-wise f1-
score above 97% was achieved. When using majority decision per sample, every 
sample could be classified without any misclassifications.

The knowledge gained from active thermography opens up promising perspectives 
for integration with the current state-of-the-art sensor technologies. Thermography 
systems can contribute to the further development of sorting systems and play 
a crucial role in improving the recycling process, especially with regard to black 
plastics. This approach can contribute to enabling more precise sorting and thereby 
more efficient recycling of plastics.

1 Introduction
Global warming and the increasing depletion of resources are major challenges 
society is facing today and in the future. In this context, the pursuit of sustainability 
has become an undeniable priority and acts as a central goal for responsible 
development. Both political and economic decisions are significantly influenced by 
the efforts to achieve these goals. To accelerate the transformation of the European 
Union towards climate neutrality and resource efficiency, the “European Green Deal” 
was launched at the beginning of 2020. One important initiative of this sustainability 
strategy is the Circular Economy Action Plan (CEAP) (EC, 2020). The CEAP 
focuses on reducing the environmental footprint within the EU and proposes various 
measures in different areas. A central aspect of this plan is the sustainable circular 
economy, which aims to minimize the consumption of resources and extend the life 
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cycle of products. The recycling of materials in particular plays a key role in this, 
which means that the recycling process is not only seen as a waste management 
strategy, but also as an essential part of realizing the goals of the CEAP. In this 
context, CEAP aims to double the use of recycled materials over the next ten years. 
This ambitious measure is intended to intensify the use of recycled raw materials 
in production and thus make a significant contribution to conserving resources and 
reducing emissions. Doubling the use of recycled material emphasizes the ongoing 
shift towards a sustainable economy and highlights the need to strengthen the 
recycling process as a central element in the circular economy.

Sorting is undoubtedly a crucial segment of an effective recycling process. The 
precise and clean separation of recyclable materials plays a key role in the process 
of increasing their usage. Accurate sorting not only enables more efficient reuse 
of materials, but also contributes significantly to improving the quality of recycled 
products. By ensuring separation by type, impurities can be minimized, which 
ultimately leads to higher quality and more versatile recycled materials. This focus 
on precision in sorting is therefore key to making the circular economy effective and 
sustainable. 

The sorting of plastics has seen significant technological advances in recent years 
(Gundupalli et al., 2017). The focus here is on near-infrared (NIR) and short-wave 
infrared (SWIR) based techniques (Chen et al., 2020; Sensors Unlimited). These 
technologies enable fast and precise identification of plastic types by analyzing the 
absorption in the respective wavelengths. However, the sorting of black plastics 
remains particularly challenging, as they are more difficult to recognize in the 
near-infrared range (Masoumi et al., 2012; Rozenstein et al., 2017). Fundamental 
research regarding the usage of terahertz waves to separate multiple black plastics 
is currently being conducted and could prove beneficial in the future (Brandt et al., 
2016). Lastly, tracer-based sorting (TBS) is already employed by some plastics 
manufacturers (Polysecure GmbH), wherein plastic additives or fluorescent 
markers are added to a compound, resulting in a separation by type and area of 
application of the plastic (e.g. food packaging) (Olscher et al., 2022). Despite all 
the progress, challenges remain, particularly due to different additives (Jehanno 
et al., 2022), multilayer packaging (Schmidt et al., 2022) and the ever-increasing 
amount of plastics that are being used (Stegmann et al., 2022). The development 
of technologies that address these challenges is crucial to increasing recycling 
efficiency and ensuring the sustainable utilization of plastic waste. 
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There exists a wide variety of analytical methods to characterize and classify 
polymers, e.g. thermogravimetric analysis (TGA) or differential scanning calorimetry 
(DSC) (Menczel & Prime, 2009). However, the use of infrared thermography to 
classify polymers is an underdeveloped field of research, but with possibly promising 
results (Aujeszky et al., 2017).

In the Fraunhofer lighthouse project »Waste 4 Future« (W4F) seven Fraunhofer 
institutes are working together to achieve a holistic improvement in the recycling 
process. The efficient utilization of carbon contained in plastics should result in 
high-quality output materials. Using an evaluation model and innovative sorting 
technology, the project aims to efficiently recycle plastics in a circular economy and 
reduce thermal utilization. Economic aspects and regulatory requirements are also 
taken into account in order to develop a sustainable business model. One part of the 
innovative sorting technology is a new approach using active thermography, which 
is explained in more detail below and the insights gained are described.

2 Active thermography
Other than in NIR spectroscopy around room temperature, infrared thermography 
in the thermal infrared range (about 2 to 15 µm wavelength) relies on the thermal 
emission of infrared radiation according to Planck’s law. Besides the temperature 
of the object, its emissivity is a decisive factor. The reflectivity plays a minor role, 
in contrast to NIR spectroscopy. Polymers appearing black in the visible absorb 
visible and NIR light very well and convert the light energy efficiently into heat and 
then into thermal radiation. Active thermography uses short-time intentional heating 
of the sample beyond its initial temperature, e. g. by a strong optical light source. 
Sample surface heating increases the infrared emission and leads to a heat flow 
from the surface into the depth of the object. The resulting increase in transient 
surface temperature is influenced by its thermal conductivity, its density, and its 
specific heat capacity. In addition, most polymers are usually semi-transparent in the 
thermal infrared. Their thermal radiation comes both from the surface and from the 
volume. A short time after optical heating, the radiation from the surface-near region 
is dominant and more dependent on the spectral properties in the thermal infrared 
than at later times (Jones Roger W. & McClelland John F., 1989), it is therefore 
useful to record the time dependence of the infrared radiation.
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By combining the effects of thermal diffusion, optical absorption, and emission of 
thermal radiation, a differentiation between different polymer materials should be 
possible. In order to accurately capture the effects described, the infrared sensor 
FLIR A35 was chosen. The operational characteristics of this camera, including 
the spectral range, were deemed sufficient to effectively fulfil the requirements. An 
overview of the technical specifications of the FLIR A35 camera can be found in 
Table 1.

Tab. 1: Thermal camera specifications

Camera type Focal Plane Array, uncooled VOX-microbolometer
Framerate 60 fps
Resolution 320 x 256 px
Spectral 7.5-13 µm
Distance camera-sample 62 cm
Thermal sensitivity NEDT 50 mK
Field of View 48 ° x 39 °

3 Design of Experiment
The implementation of a proper design of the experiment is crucial in researching 
new measurement techniques. A proper and well-thought experimental design 
ensures that the objective of the experiment is achieved with high accuracy and 
efficiency. Measuring quantities is always an integral collection of data across many 
factors. Therefore, it is important to systematically control the variables, minimize 
the biases, and enhance the statistical validity of the measurement. A disciplined 
approach increases the reproducibility of results and ensures an identification of 
causal relationships, instead of correlations.

To ensure a stable measurement setup, the configuration was carefully planned 
and mechanically secured, preventing any alterations in distances throughout the 
project. A conveyor belt is moving the samples at a constant speed. This is a critical 
aspect, enabling the construction of a cooling curve for each pixel from a sequence 
of frames. The samples are transported to an infrared heater, actively introducing 
heat. Subsequently, the samples are transported further and enter the recording 
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range of the infrared camera. By maintaining a fixed position and belt speed, 
uniform cooling times for the samples across all measurements are ensured. This 
standardized approach enhances the reliability and precision of the experimental 
outcomes. A schematic of the measurement setup is shown in the figure Fig. 1.

Fig. 1: Measurement setup schematic

With the setup being defined, it is essential to identify the most dominant influences 
that affect the whole measurement procedure. Once the influences relevant to this 
measurement have been identified, they must be classified. A list of influences 
including their categorization is shown in Fig. 2. Influencing factors are displayed 
in three different categories. The “star” marks the relevant information that is 
categorized as a measurement effect, which is the aim of the measurement. The 
wrench symbolizes influences that are marked as parameters, which means that 
they can be actively controlled by the measurement setup. The “warning sign” 
influences are non-predictable, not measurable or changing influences, and in real 
world applications especially not controllable, which can affect the measurement. In 
real-world applications, factors such as the sample geometry, ambient temperatures, 
and containments play significant roles but cannot be controlled by the sorting 
facilities. When analyzing the data, it can always happen that unknown influences 
exist, that may exhibit correlation over time. Factors like the self-heating of sensors 
or alterations in boundary conditions can influence the data over time. Additionally, 
the inherent inaccuracies in sensors contribute to what is commonly known as 
sensor scattering.
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Fig. 2: Categorized major influences that affect the measurement

In the initial phase, it is crucial to optimize the parameters and set them to their 
best possible values, so that subsequent adjustments are no longer necessary. 
This initial optimization step effectively mitigates some of the influences. All 
interfering influences are kept constant, to attempt to maintain consistency along 
all the measurements. The first series of measurements therefore is made on clean 
samples with fixed dimensions, as well as controlled sensor-, sample- and ambient 
temperature.

The selection of samples must be chosen wisely to ensure a comprehensive 
representation of the desired influences (illustrated as “star” factors). This is 
essential to account for inhomogeneities and sensor scattering. These factors are 
difficult to control by other means and must therefore be included in the training 
process. The three polymers examined in this work are black due to the addition of 
carbon black to the batch and filled with 30 % glass fiber. The samples consist of a 
polyamide 66 (PA66-GF) (TECHNYL A216 V30 BLACK 21N by DOMO Chemicals, 
Leuna, Germany), a polyamide 6 (PA6-GF) (DOMAMID 6G30 BK, also by DOMO 
Chemicals) and a polypropylene (PP-GF) (Scolefin 53 G13-9 by Ravago Group, 
Arendonk, Belgium). All polymers were injection molded in the facility of Fraunhofer 
Institute for Structural Durability and System Reliability LBF. The geometrical 
shape is composed of a square with a side length 80 mm and a thickness of 3 mm 
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and a triangle with the longest side of 90 mm. The triangular part is only used for 
numbering and touching the samples, whilst the square part is the actual analyzed 
area. This prevents measurement errors introduced by heat transfer through contact 
with the hand or by measuring the numbering of a sample instead of their cooling 
curve. An example of a sample can be seen in Fig. 3

Fig. 3: PA6-GF sample no.874

To ensure a minimum in variance between the samples, the injection molding 
process was kept running for a while before ten samples of a given material were 
produced in series. The thermal conductivity λ of the three analyzed polymers are 
shown in Table 2, taken from the matweb website (matweb).

Tab. 2: Thermal conductivity of the three analyzed polymers

Material Thermal conductivity λ[W/mK]
PA66-GF 0.24-0.25
PA6-GF 0.25
PP-GF 0.27-0.331
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Finally, in order to suppress the possible influence of temporal dependencies, a 
randomized sample sequence is selected. This approach eliminates dependencies 
in the data and contributes to a more robust and unbiased analysis.

4 Data analysis
Data analysis plays a central role in the measurement process, as it establishes a 
correlation between the measured data and the material properties. An essential 
process is preprocessing, which aims to amplify the desired effect while minimizing 
interfering influences. After pre-processing, the actual analysis is carried out using 
various machine learning (ML) techniques to identify patterns and correlate the data 
to its respective material.

4.1 Feature extraction
The conveyor belt is moving the samples at a consistent speed, and the camera 
takes frames with a constant frame rate that enables a precise calculation of the pixel 
shift, i.e. the distance traversed by the samples between the consecutive camera 
frames. As parts of the sample move out of the camera view, cooling curves are 
constructed for each pixel along the sample line by line, using a corresponding stack 
of the previously taken camera frames. The number of camera frames taken for 
each piece of the sample, i.e. the cooling curve resolution, depends on the conveyor 
belt speed and the camera frame rate. Greater resolution improves result precision, 
yet, finding a tradeoff is necessary for maximizing both the performance and the 
quality of the result. Since in most cases, the pixel shift is a non-integer number, 
linear interpolation was utilized while creating the cooling curves to enhance the 
accuracy of the results.

A polynomial fitting technique was employed to approximate the logarithmic 
temporal evolution of pixels, enabling the synthesis of data based on the resulting 
coefficients, as suggested by Shepard et al. (Shepard et al., 2001). The synthetic 
data, as shown in Fig. 4, reproduces the authentic thermal characteristics of the 
signal, effectively mitigating high-frequency noise components. Signal processing, 
e.g. the Fast Fourier Transform (FFT), performed on the synthetic data does not 
introduce additional noise, thus enhancing the efficiency of further data analysis. 
Another advantage is the reconstruction of the complete temporal evolution of a 
pixel using only the derived coefficients. This reduces storage demands and makes 
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the overall computational process more efficient, therefore playing an important role 
for time critical on-the-fly sorting of plastics. In addition, the use of synthetic data 
allows us to mitigate some other artifacts, such as camera reflections, observed in 
a circular region directly beneath the camera. The uncooled camera heats up during 
use, reaching temperatures of about 40 °C. This heat (infrared radiation) is then 
reflected on the surface of a sample and, depending on the incident angle, sent back 
into the lens of the camera. These artifacts are prominent as an erroneous elevation 
roughly in the middle of the cooling curve, i.e. in the region where the samples are 
halfway along the camera view, as illustrated in Fig. 4.

Fig. 4: Cooling curve source data and synthetic data; left: without artifacts, right: 
camera reflection artifact at frames ~60-75; a subset of the total of 136 frames

The FFT was applied to the cooling curves, as suggested by Maldague & Marinetti 
(Maldague & Marinetti, 1996) and widely adopted in related studies. The phase shift 
and amplitude information extracted via FFT helps to distinguish materials based 
on their thermal response (as shown in Fig. 5 and Fig. 6), avoiding the complexity 
of directly examining and comparing the cooling curves.

Fig. 5: FFT phase images (first frequency bin after DC) for PA66-GF, PA6-GF and PP-GF samples
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Fig. 6: FFT amplitude images (first frequency bin after DC) for PA66-GF, PA6-GF, and PP-GF samples

Different features and parameters were evaluated, considering their influence on 
the machine learning model’s effectiveness. A comparison of FFT results obtained 
using source and synthetic data proves the effectiveness of the chosen approach. 
Through a series of extensive tests involving polynomials and derivatives of different 
orders, their outcomes were systematically compared, identifying the most effective 
parameters for further analysis. In addition to FFT-related features, it has proved 
useful to calculate the relative temperature drops by putting different target frames in 
relation to the initial frame, where an example for different materials is shown in Fig. 
7. The following features were identified as the most significant and were selected 
as the input for the machine learning model:

•	 FFT amplitude (first 10 frequency bins after DC)

•	 FFT phase (first 10 frequency bins after DC)

•	 relative temperature drop for target frames 10, 20, 50, 80 and 90

•	 two polynomial coefficients (first-order polynomial in the logarithmic domain)
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Fig. 7: Relative temperature drop for PA66-GF, PA6-GF and PP-GF samples, target frame 80

Data inspection

The analysis of the data initially begins with a univariate perspective. In this particular 
case, where the potential influences are largely suppressed, a univariate approach 
already can be effective in solving the classification problem. By looking at individual 
variables in isolation, this method enables a comprehensive understanding of the 
contribution of each factor and provides valuable initial insights. With these insights, 
a foundation is established for more complex analyses and a deeper understanding 
of the underlying patterns. Fig. 8 shows the value of one feature (first amplitude of 
the FFT) for each material. This approach would already allow a partial classification. 
However, in order to obtain a more accurate and stable prediction, all available 
features should be taken into account. 
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Fig. 8: First amplitude feature A-1 extracted from all samples

To inspect the multidimensional space of the dataset, different machine learning 
methods are applied using Python (version 3.8.10) and the Scikit-learn library 
(version 1.2.2) (Pedregosa et al., 2011). A multivariate technique that can be used 
is the Principal Component Analysis (PCA) (Jolliffe, 1986). PCA is generally used for 
dimensionality reduction. However, by analyzing the newly generated components, 
this algorithm can be applied to identify the most influential factors in the data 
set. This capability enables the identification of previously unseen or unknown 
influencing factors when designing the experiment. As the PCA is unsupervised, it 
is not trained to differentiate between classes. However, observing the differentiation 
of different classes in the newly generated principal components demonstrates the 
ability of this measurement setup to achieve material separation. Fig. 9 illustrates 
the first and second principal components, visually distinguishing the classes with 
different shapes. In the figure shown, only every 60th point is displayed for visibility 
reasons. Except for outliers in the top right, the difference between PP-GF and both 
PA-GF’s is the highest influence in the dataset. 
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Fig. 9: Dataset plotted over two principal components (every 60th point for visibility)

4.2 Classification model
To create a machine learning model capable of distinguishing between three 
black plastic materials, the dataset is divided into training and validation sets. The 
validation set includes three complete samples that have been selected manually 
for each material. A pipeline is created containing a standard scaler followed by a 
linear discriminant analysis (LDA) (Fisher, 1936), which is a supervised method of 
multivariate statistics. During the training phase, the model is taught with the training 
dataset. Using the validation data, a transformation of the higher dimensional dataset 
is projected onto two new axes, called canonical variables (Fig. 10). In comparison 
to the unsupervised method (PCA) before, this projection with a supervised method 
improves the separation of the different materials. In this illustration, the classes 
are represented by different symbols. The distinction between PP-GF and the two 
PA materials is very clearly recognizable. Even PA6-GF and PA66-GF are mostly 
separable but have a slight overlap.
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Fig. 10: Projection of the validation dataset in two new canonical variables

To measure the accuracy of the predicted results, a commonly used score is the 
f1-score. The f1-score combines precision and recall, its calculation is described in 
Fig. 11 (Fawcett, 2006).
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Fig. 11: Calculation of the f1-score

As shown in Fig. 12, an averaged f1-score of 0.985 could be achieved. Challenges 
in the prediction accuracy can be observed only between the materials PA6-GF and 
PA66-GF, which have very similar physical and chemical properties. However, the 
discrimination between PA6-GF/PA66-GF and PP-GF can be performed with perfect 
precision, achieving 100% accuracy.
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Fig. 12: Classification report of the validation dataset

Since pixel-wise sorting is infeasible, a strategic approach is to make a majority 
decision for each sample. Fig. 13 shows the confusion matrices in which the pixel-
wise predictions (left) and the results obtained from majority decision per sample 
(right) are compared. The use of the majority decision method has led to an accurate 
classification of each sample.
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Fig. 13: Confusion matrices; left: pixel-wise, right: majority per sample

5 Conclusion and outlook
In this paper, an attempt has been made to classify black plastic materials (PA6-
GF, PA66-GF, PP-GF) using active thermography. A setup has been developed that 
enables stable and defined measurements. All influencing factors were identified 
and classified, with the goal of reducing unknown and unwanted influences. Through 
iteratively improved pre-processing techniques, a machine learning model was 
created that demonstrated the capability to correctly classify all validation samples. 
In doing so, it has been shown that the current state of the art in sorting plastics can 
be improved through the application of this technology.

The next steps involve using this laboratory setup and the knowledge gained to 
add more and more of the real-world influencing factors, which were previously 
excluded (most importantly: different ambient temperatures, and different sample 
geometries). A calibration and temperature correction for the acquired signals can 
be trained and performed, increasing the stability of the data. In addition, the camera 
can be substituted to allow an increase of the belt speed through a higher frame 
rate. A camera with a higher resolution can also improve the quality and precision 
of the analysis, which is important for smaller sample sizes in the future. Another 
challenge is to reduce the self-reflection effects of the camera. This can be done, 
e.g. by placing the camera at an angle instead of vertically. In this case, the recorded 
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images must be rectified using a corresponding geometric transformation. Also 
ongoing is the fusion of active thermography in the »Waste 4 Future« project into 
a demonstrator including other modalities, creating a multimodal sorter for plastic 
materials. As shown in this paper, the active thermography approach is capable of 
increasing the accuracy of classification on black plastics. 
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Abstract
Spectral imaging or Near-infrared (NIR) imaging spectroscopy has developed over 
the past years into an established technology for sensor-based sorting applications, 
for example by sorting different types of plastic based on their different molecular 
composition to retrieve recyclable materials from waste (Bilitewski & Härdtle, 2013). 
By using spectral imaging it is possible to make the chemical, color and geometric 
properties of an object visible, which enables identification of materials or material 
properties in sensor-based sorting applications (Kulcke et al., 2003).

Indium gallium arsenide (InGaAs) sensors, which are particularly sensitive in the 
shortwave infrared (SWIR) range, are usually used as sensors for hyperspectral 
imaging (HSI) cameras. Standard InGaAs sensors can be used from 900 nm to 1700 
nm. Two important criteria for qualitative optical sorting with high throughput are 
spatial and spectral resolution. Spectral resolution refers to how many wavelength 
bands are available for the material identification. Spatial resolution refers to the 
number of available pixels. With high spatial resolution, the radiation information 
from significantly more points on the conveyor belt is used for identification than 
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with a low spatial resolution (Fleischhacker, 2011; Kroell et al., 2022; Maier et al., 
2024; Schlögl, 2021).

In the last three years, new further developed sensor technologies have evolved 
and created the foundation for a third generation of imaging spectrometers. HAIP 
Solutions has introduced the BlackIndustry SWIR 1.7 (900-1730 nm) camera series 
in summer 2023 providing a never-before-seen spatial resolution of 1280 spatial 
pixels in a hyperspectral camera for the SWIR range. With higher spatial resolution 
it is now possible to detect even very small particle sizes, for example in pastic 
flake sorting or foreign object detection within the food industry. Next to the higher 
spatial resolution is also the increased sensitivity in the 1600-1750 nm region in 
combination with so called Fast Midwave IR emitter illumination of high importance 
with the new camera generation.

Still until today, radiation emitted by halogen lamps is the standard illumination to be 
used in all NIR-sorting applications (Gundupalli et al., 2017). After conducting trials 
and building lab-based prototypes, we propose the use of a new type of illumination 
for NIR-sorting with better fitting peak response at 1500 nm for SWIR range (900-
1700 nm) in comparison to halogen at 1100 nm (see Fig. 1). By increased sensitivity 
in the third absorption band of polymers, it will now be possible to separate plastic 
waste more accurate.

Previously extended shortwave infrared (exSWIR) range HSI cameras 
(1000-2500 nm) had to be used for the detection of absorption features 
occurring at the edges of standard SWIR HSI cameras. exSWIR camera 
however are more costly than conventional SWIR HSI cameras, making 
them less attractive for integration into NIR-based sorting machines. 
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Fig. 1. Spectral energy distribution (Optron GmbH, 2024)

Integration of spectral imaging cameras in sensor-based sorting has developed 
rapidly in recent years and has found many applications in waste processing and 
recycling, mining as well as food industry. It is to be expected that further technological 
developments will continue to decrease prices and make hyperspectral cameras 
economically more attractive. Increased spatial resolution makes it possible to use 
less cameras to monitor the same conveyor belt width as previously needed.

A newly proposed illumination solution for combined use with SWIR range HSI 
cameras, can create better intensity values in the upper wavelengths from 1600-
1750 nm, which could potentially lead to better separation of polymers without the 
need extended SWIR range sensors.
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Abstract
Over the past 20 years, the research on the topic of sensor-based sorting has 
flourished. In the area of recycling post-consumer plastic waste, sensor-based 
sorting has become an essential step in the mechanical recycling process due to its 
several advantages including a higher level of automation, and improved accuracy. 
Thanks to the booming of artificial intelligence and machine learning methods, 
the analysis of the hyperspectral data generated by the optical sensors can be 
processed automatically and precisely.

Near-infrared (NIR) sensors are adopted as the state-of-the-art technology in 
classifying post-consumer plastics due to their high technical maturity, which has 
been proven to be robust to the disturbing factors in real waste flows and reached a 
99% classification accuracy (Kroell et al., 2022). Conventional NIR sensors usually 
operate in a wavelength range of 1000 nm to 1700 nm, in which different polymers 
can be distinguished by their characteristic absorption spectra. Due to the increasing 
demand for process monitoring and quality control in the recycling plants, a larger 
number of sensors are to be installed. The high unit price of NIR sensors leads to 
higher investment costs in case of scale effect, which makes the application situation 
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rather unattractive. Therefore, in this paper, the feasibility of cost-effective CMOS-
based NIR for the classification of post-consumer plastics is explored for the first 
time, which operates in the NIR band from 750 nm to 1050 nm. The optical sensor 
used is the HAIP BlackIndustry NIR Camera provided by HAIP Solution GmbH.

As part of an experiment, post-consumer plastic wastes of different material 
properties (colors and shapes) that were collected from the preconditioning stage in 
a sorting plant were used and consisted of four common plastic types: high-density 
polyethylene (HDPE), polypropylene (PP), polystyrene (PS), and polyethylene 
terephthalate (PET). This allows us to cover the influence of different colors, shapes, 
and applications on the spectra, making the results more widely applicable. They 
were then placed on a running conveyor belt of the NIR-Measurement-Stand, and 
spectral information was saved and analyzed by the decision tree and random forest 
model. 

The results show that CMOS-based NIR sensor which operates in the above-
mentioned limited wavelength range cannot compete with the performance of 
conventional NIR technology in practical applications for post-consumer plastic 
waste recycling. However, the research shows how far the potential and feasibility 
of CMOS-based NIR sensors in the sorting are and provides a good starting point 
for further research, such as incorporating more advanced deep learning models, as 
well as exploring the application of CMOS-based NIR sensors in more homogeneous 
waste, e.g. post-industrial waste classification.

1 Introduction
Plastic is one of the most important and most frequently used materials and is 
widely used in almost all industries (Andrady & Neal, 2009). Since 1950, the global 
production of plastic has experienced unprecedented growth and has increased 
230-fold to date. This has led to a significant increase in plastic waste, which has 
risen from 156 million tons in 2000 to 353 million tons in 2019. In 2019 however, 
only 9 wt% of plastic waste was recycled and 19 wt% was used to generate 
energy (OCDE, 2022). Plastics are not biodegradable due to fossil hydrocarbons 
like ethylene and propylene and consequently accumulate in landfills and natural 
environments instead of decomposing  (Geyer et al, 2017; Barnes et al., 2009). 
The almost pollution of the natural environment by plastic waste is becoming an 
increasing concern. 
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Near-infrared (NIR) spectroscopy is a modern technology for sensor-based 
characterization of plastic waste. The principle of NIR is to classify materials 
based on their characteristic spectra (Siesler et al., 2002). These spectra contain 
information about the chemical composition and physical state of the material 
(Linnemann, 2008). Today, the use of NIR sensor-based sorting (SBS) to classify 
common plastics is a state-of-the-art technology (Maier et al., 2024). While NIR 
technology offers high accuracy in the identification of plastic materials, it requires 
significant investment costs. Sensor-based sorting using NIR sensors is already a 
widely adopted application. However, for newer applications like quality control and 
process monitoring, a significant number of sensors need to be installed, making 
it economically unattractive due to the high costs involved (Kroell et al., 2022). To 
tackle this challenge, this paper delves into the potential of inexpensive CMOS-
based NIR sensors and their ability to be used in the process, by filling the research 
gap of exploring the feasibility of sorting post-consumer plastic waste by CMOS-
based NIR spectroscopy in the wavelength range from 850 nm to 1050 nm.

2 State-of-the-art research
Based on the common terminology in the sensor-based-sorting industry, the 
wavelength range from 750 nm to 1050 nm is usually referred to as part of the 
visual to near-infrared range (VNIR), which is from 400 nm to 1000 nm (Maier et 
al., 2024). VNIR technology is currently used in many areas to classify materials. 
For example, it is used in agriculture to analyze wheat leaves when exposed to salt 
(Mokhtari et al., 2014). In mineralogy, it is used to analyze olivine samples (Carli et 
al., 2018). VNIR technology is also used in the food industry to classify chicken meat 
samples (Chung & Yoon, 2021). In the field of plastic classification, it is currently 
more common to use it on satellites, airplanes, drones, unmanned aerial vehicles, 
and handheld devices to monitor plastic waste that is easily submerged or floating 
in the oceans (Moshtaghi et al., 2021). 

In the area of plastics from post-industrial and post-consumer material streams, 
conventional NIR technology is generally adopted. Given the fact that some common 
functional groups in plastic products already exhibit characteristic absorption peaks 
in the spectral range from 850 nm to 1050 nm (Stuart, 2008), the investigation of the 
potential and feasibility of CMOS-based NIR spectroscopy for the sorting of post-
consumer plastics is of great research value. The purpose of this paper is to explore 
whether it is technically feasible to classify post-consumer plastic wastes using 



224

Sensor-Based Sorting & Control 2024

CMOS-based NIR sensors, how accurately can CMOS-based NIR sensors classify 
post-consumer plastic wastes, and whether there is an opportunity for CMOS-based 
NIR sensors to replace conventinal NIR sensors in the recycling industry.

3 Materials and methods 

3.1 Input materials
In this paper, we only focus on classifying the plastic types of the samples into which 
the samples are pre-categorized as HDPE, PP, PS, and PET. The packages include 
different applications of food and non-food, shapes of bottles, trays, and others, 
and colors and grey tones from transparent, and semi-transparent to opaque, red, 
blue, yellow, white, etc. Dark colors like dark grey are not considered because the 
CMOS-based NIR sensor cannot capture sufficient reflectance intensity on them 
according to our pre-experiments. As far as possible, the selection was considered 
to ensure that each packaging color and application type was evenly represented 
across the plastic types. Caps and sleeves made from a different material than the 
bottle are still retained, to best present the original material flows in the sorting plant. 
The total number of samples of each plastic type is listed below. The quantity of 
each type of plastic bottle will be balanced according to the number of pixels in the 
data processing step.

Tab.1: Number of each type of plastic bottle in the experiment

Plastic type HDPE PET PP PS
Number of packaging 153 149 191 195

3.2 Experiment setup
The setup of the test bench is shown in Fig. 1. The samples are manually placed 
on a conveyor belt and pass underneath it in sequence. Two 400 W halogen lamps 
on the same side provide adequate lighting intensity for the CMOS-based NIR 
sensor. The scanning software automatically saves the scanned information as 
hyperspectral images in .h5 format files every two seconds. 
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Fig.1: Experiment setup

3.3 Data preprocessing
Due to variations in light sources at different daytimes and uneven spatial 
distribution of illumination, the first step is to perform black and white balance on the 
hyperspectral images. Before each recording experiment, five images are recorded 
for black balance and white balance by masking the lens and photographing a 
white ceramic plate, respectively. We average the 5 images along the conveyor 
belt direction and end up with an array of one row in the conveyor belt direction, 
which are named dark field images and white field images. Using the averaged 
one-dimensional black-and-white balanced correction array, each pixel point at the 
corresponding position of the sample images is corrected according to the following 
formula:

After this, the area of the image containing the sample was manually intercepted 
via a self-developed Python script. This was done by dragging the mouse along the 
edge of the sample area in an opened window which visualizes the h5 image in a 
single channel, which is shown in Fig. 2.
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Fig.2: Schematic of sample selection by dragging the mouse 

After recording, each plastic type has a different number of samples and a 

different number of pixels in the region of interest (ROI). To reduce the risk of 

overfitting a particular plastic type during the training of the machine learning 

model, the plastic type with the smallest number of pixels, which is PS in this 

paper, should be used as the baseline, and a final dataset with an equal total 

number of pixels for each plastic type should be obtained by randomly dis-

carding pixel points of the other plastic types. Afterward, since the absorption 
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Fig.2: Schematic of sample selection by dragging the mouse

After recording, each plastic type has a different number of samples and a different 
number of pixels in the region of interest (ROI). To reduce the risk of overfitting a 
particular plastic type during the training of the machine learning model, the plastic 
type with the smallest number of pixels, which is PS in this paper, should be used 
as the baseline, and a final dataset with an equal total number of pixels for each 
plastic type should be obtained by randomly discarding pixel points of the other 
plastic types. Afterward, since the absorption peaks of common functional groups 
in plastics are above 850 nm, we discarded the spectral information up to 850 nm.

The data were derived once to make the characteristic peaks more visible and 
to facilitate comparison with related studies in the field. After obtaining the first 
derivative, the data were smoothed through a rolling window to smooth out the effect 
of possible outliers at certain wavelengths in the spectra and to clearly show the 
characteristic reflectance peaks.

3.4 Machine learning model
In this paper, a decision tree model (Grajski et al., 1986) and a random forest 
model (Breiman, 2001) are used for classifying the spectrum from the pixels of each 
sample to the correct plastic type.
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3.4.1 Description of the models
The decision tree model is widely used in the field of classification problems, its 
basic principle is that firstly, the data set is divided into a test set and a training 
set, the test set is only used to test the model, and the training set is only used to 
train the model, then the input training set is partitioned into multiple subsets by 
setting nodes. Then it is determined whether all these subsets are the same class of 
plastics, if not, then proceed to repeat the node setup for these subsets to perform 
recursive partitioning. 

The basic principle of random forest is to first construct multiple independent 
decision trees, then each tree independently predicts the classification of the same 
input sample, the prediction result of each tree is equivalent to one vote, for a given 
sample, and the algorithm aggregates the votes of all the decision trees, and then 
selects the category with the most votes as the final prediction result. Random forest 
combines the predictions of multiple decision trees to improve the accuracy and 
stability of the overall model while reducing the risk of overfitting.

3.4.2 Model tuning
Then 5-fold cross-validation is used to reduce the risk of overfitting, the dependence 
of the final model, and parameter selection on the division of the training and test 
sets and making full use of the data for the training of the model. Because the spectra 
of the pixels in the neighborhoods within the same sample are very homogeneous, 
the dataset is grouped by samples before shuffling, so that the neighbored pixels in 
the same sample will not be divided into both the train and test dataset. 

Afterward, GridSearchCV was used to try different parameter combinations on the 
machine-learning model. The best-performing parameter combination is finally 
selected in conjunction with five-fold cross-validation, and the optimal model is 
generated.

4 Results
The spectra from the CMOS-based NIR sensor of the 4 plastic types are visualized 
in Fig. 3. PS, PP and HDPE show distinct peaks, whereas PET, represented by the 
grey curve, has no identifiable peaks in its spectrum in this wavelength range. 
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Fig. 3: Averaged spectra of HDPE, PET, PP, and PS samples from the experiment

Fig.4 shows the correctly classified number of pixels of each plastic type. Random 
forest realized a better classification performance than decision tree for all the 
plastic types. Both models produced more misclassifications when distinguishing 
between PS and PET. HDPE demonstrates the highest classification accuracy and 
false negative rates in both models. According to the decision tree model, the F1-
scores for HDPE, PP and PS are of 89%, 83%, and 75%, respectively. For PET, the 
F1-score was only 69%. However, the random forest model performed even better, 
achieving F1-scores of 95%, 89%, and 81% for HDPE, PP, and PS, respectively, 
and a better result for PET, which was 77%.
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Fig. 4: Confusion matrix of the classification of HDPE, PET, PP, and 
PS from decision tree (upper) and random forest (lower)

Fig. 5 shows the boxplots of the distribution of the percentage of correctly classified 
pixels in each sample in the test set. If we set the classification logic in a way that 
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when over 70% of the pixels in a sample are categorized as a particular plastic 
type, the sample will be classified as that plastic type (Chen et al., 2021). Following 
this logic, we can achieve the correct classification at the particle level by decision 
tree, which is as follows: HDPE 89%, PET 55%, PP 86%, and PS 60%. When using 
random forest, the correct classification is: HDPE 87%, PET 94%, PP 77%, and 
PS: 73%. 

Fig. 5: Cumulative accuracy curves of the percentage of correctly classified pixels in each single 
plastic sample for each plastic type PS from decision tree (upper) and random forest (lower)
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5 Conclusion and outlook
Our investigations show that HDPE has the best utilization potential in the 
classification by using the CMOS-based NIR sensor. PET has no recognizable 
peaks in the spectrum and interferes with the classification of other plastic types, 
especially PS. For this experiment, due to the influence of bottle caps, and sleeves, 
as well as the contamination and the brightness of the bottle on the exposure, 
we explored the confidence level of the CMOS-based NIR sensor for particle-level 
classification at 70% threshold. The results show that CMOS-based NIR sensors 
cannot completely replace conventional NIR technology both in the laboratory and 
industrial scale. However, for the classification of specific plastics such as HDPE 
and PP, CMOS-based NIR shows potential for application alone or in sensor fusion 
in combination with, e.g., conventional NIR sensor.

In future research, the ability of CMOS-based NIR sensors to classify specific plastic 
types such as HDPE and PP on the industrial scale could be further validated, which 
can also be done by combining sensor fusion or by conducting experiments in real 
sorting plants. Besides, it is also meaningful to explore the application of deep 
learning techniques such as convolutional neural network (CNN) for classification 
by using CMOS-based NIR sensors. In addition to post-consumer plastic wastes 
with complex properties, the potential application of CMOS-based NIR sensors 
to classify more homogeneous waste streams like post-industrial plastic flakes 
deserves to be further explored.
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Abstract
Metal recycling strongly reduces the CO2 emissions and raw material consumption 
in comparison to primary production. To improve the useability of variable scrap 
feedstock, there is a need for fast inspection of the material batches being delivered 
to the processing plants.

For this purpose, an optical sensor system was developed using the method of 
laser-induced breakdown spectroscopy (LIBS). In three different industrial plants for 
production of aluminium, lead, and steel, the universal sensor system was tested. 
Individual application schemes have been worked out to retrofit the sensor into the 
material flow schemes of each of the plants. The LIBS system itself is equipped 
with a 3-dimensional optical scanner to enable measurement positions being freely 
distributed within a distinct volume. Nevertheless, the presentation of the material 
to the sensor is a key issue to obtain a representative result.

For the material transport by belt conveyors, a good coverage of fine-grained 
material is achieved by a guided distribution of measurement points based on laser 
line section monitoring of the surface. When being applied to aluminium chips, the 
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average composition is determined but also individual outliers are detected, which 
present single pieces of significantly deviating origin. In the case of lead recycling, 
a large variety of metallic and non-metallic materials is used for which the major 
elements of interest such as lead, antimony, calcium, and tin are determined.

For a steel plant installation, an inspection of the individual truck loads must 
be performed prior to unloading the trucks at the target location. For this use 
case, an applicator was designed to access the truck load from above for the 
LIBS measurements. In all use cases, the immediate knowledge of the material 
composition supports the plant operators and material mix optimizing tools enable 
cost-, material- and energy-efficient plant operation.

1 Introduction
Metals are suitable for recycling without quality loss, in principle, if contaminations 
could be completely avoided, and with a high degree of energy saving which 
can amount to 95% in comparison to primary production from ores in the case of 
aluminium (IAI 2020). To increase the secondary production is thus intended in 
order to reduce the consumption of natural resources and carbon emissions. On 
the other hand, a perfect match of the input material composition to the required 
product quality would be required to achieve a complete circular production which 
is not feasible in practice. The feedstock material available to the recycling plants 
today is inhomogeneous and of widely unknown composition as many sources of 
metal scrap are not suitable for individual collection of alloys or single piece sorting 
by composition. 

The definition of trade categories is often rather broad, e.g., for steel as old scrap, 
new scrap, shredded, turnings, high-residual, and incineration scrap according to 
the European Steel Scrap Specifications. In relation to chemical composition only 
desired upper limits of some contaminants are defined, e.g., below 0.4 m.-% Cu for 
old scrap type E1 (BDSV, 1995), and it can often not be validated if they are obeyed.

However, metal recycling plants are aiming to include scrap feedstock of low quality 
into their feedstock, which is of better availability and at lower prices. The desired 
increase of both secondary raw material share and production quality requires a 
good knowledge of the used feedstock. 
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To optimize the scrap mixture for the furnace process in terms of costs and production 
quality based on the material on stock is a task that is even more complicated if the 
composition of the feedstock is not well defined. Since not all feedstock is suitable 
for single piece sorting or available as pure pre-defined fractions, batches of mixed 
or undefined materials are used in the production. Thus, there is a large need to 
analyze the incoming metal scrap batches at the time of delivery and thereby assign 
the material to the right storage fraction and provide the compositional data to the 
scrap control system of the plant. Currently, no sensor is available to perform this 
task by inline measurements. 

2 LIBS sensor system
To approach the task of scrap feedstock chemical analysis, a system was designed 
based on laser-induced breakdown spectroscopy (LIBS, Fig. 1), which has been 
used for metal analysis and sensor-based scrap sorting before (Noll et al., 2018). 
The LIBS method uses a pulsed laser to ablate and excite sample material to induce 
emissions of its constituting elements for spectroscopic analysis. A universal sensor 
was developed for retrofitting of various existing metal recycling plants, which all 
have their individual feedstock handling processes and material requirements.

Fig. 1: Scheme of LIBS measurement process (left) and LIBS scanning of a material layer (right).
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The concept includes a laser optical system that is placed overhead the material 
to be inspected. The downward pointing laser beam is directed via a laser scanner 
to the material surface in three dimensions. As shown in Fig.1 (right) a scanning 
in lateral direction allows to access any piece of a continuous material stream. A 
movement of the laser focal spot in vertical direction is used to adapt the LIBS 
measurement process to the local material surface height. As indicated in Fig.1 
(left, bold black) a surface contamination is often present on the surface, which is 
not of representative composition. Therefore, a laser ablation process is included 
into the LIBS measurement process which allows a local cleaning of each individual 
measurement spot within milliseconds before the analytical laser-induced plasma 
is created.

3 Application cases
The LIBS sensor system has been tested on-site in three industrial recycling plants, 
adapted to the existing feedstock handling.

3.1 Aluminium recycling plant
The aluminium plant involved is specialized on the recycling of aluminium chips from 
manufacturing processes, being obtained from a wide range of providers. Since 
manufacturers of aluminium components are machining a variety of different alloys, 
also the composition of the residual chips is changing. Within the plant, the delivered 
batches are pretreated and partly transported on conveyor belts. As the material on 
the belt is presented as a shallow layer to the LIBS sensor, a direct optical access 
is possible to most pieces and the scanner allows a representative sampling. The 
system during operation is shown in Fig. 2.



239

Universal LIBS Sensor for Efficient Use of Variable Feedstock in Metal Making Processes

Fig. 2: LIBS measurements of aluminium chips transported on the conveyor belt.

The LIBS system and data evaluation are calibrated using measurements of certified 
reference samples, leading to a high reliability of the results. For example, Fig.3 
shows the observed variation of manganese content of five batches of processed 
aluminium chips (V-A to V-E) in the sub-percent range.

Fig. 3: LIBS inline analysis for Mn content in weight-% of aluminium chips (green) in 
comparison to laboratory analyses (blue) and melt sample analysis (orange).
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The results from the LIBS measurements carried out inline on the moving 
belt are in good agreement with the lab analyses according to a standardized 
sampling procedure which is used for reference but is time consuming and its 
representativeness strongly depends on the amount and distribution of sampling 
spots over the material batch. Within one minute more than 1000 LIBS measurements 
at individual locations are executed, which provide a good statistical average at the 
temporal resolution required for the material control. 

3.2 Steel recycling plant
In steel plants, the scrap feedstock is often not transported internally by means 
which would make it easily accessible. The scrap is delivered by trucks directly to the 
scrapyard where they are unloaded at the assigned feedstock fraction. It is therefore 
desired to inspect the truck load on arrival before unloading. This will enable an 
assignment of the feedstock fraction for unloading according to the composition of 
the delivered material. A concept was developed for scanning the material on a truck 
which is guided through a gantry, see Fig. 4. 

Fig. 4: Schematic drawing of a LIBS system (blue) mounted on a 
gantry for inspection of truck delivered scrap batches.

An additional wide scanning range for the LIBS measurements is realized which 
allows to inspect individual truck delivery within a time of a few minutes which is 
acceptable as delay before unloading.
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Fig. 5: Scanning LIBS measurements carried out on a batch of steel scrap.

As visible in the example of Fig. 5, the old type steel scrap is not a continuous layer 
of material but exhibits a complex surface geometry. The scanning LIBS concept 
based on included 3D surface geometry inspection allows to focus the laser to the 
individual scrap pieces not only on the very top, but also through gaps between other 
parts within a given height range of 20 – 30 cm. 

Considering the rust covered scrap pieces, it is obvious that accurate measurements 
are only possible after the previous laser cleaning of the measurement spots. The 
measurement results can directly be validated for single scrap pieces. However, it 
still has to be considered that the LIBS measurements can incorporate only scrap 
pieces which are optically accessible from the top. The representativeness of such 
measurements cannot be validated based on individual batches but it has to be 
monitored in relation to production data over a longer time period. 
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3.3 Lead recycling plant
As a third use case, the LIBS sensor was tested in a lead recycling plant. Here, again, 
delivered material batches are put on a belt conveyor, where it can be accessed for 
LIBS measurements during the continuous movement. Whereas the general set-up 
is comparable to that shown for aluminium above, additional challenges are posed 
by this use case. Fig. 6 shows examples of the material. Although it is delivered as 
bulk freight, the material exhibits large agglomerates and can be dusty. Because 
lead containing material is of significant risk to health and environment, it can only 
be handled in dedicated facilities with protective measures. 

Fig. 6: Left: LIBS measurements on dusty lead feedstock (drosses). The scattering of the 
light section laser is visible in red over the full width of the belt. The path of the LIBS laser is 
visible as a white vertical line in the front. Right: metallics from lead acid battery recycling.

The optical 3D geometry measurements have proven to work reliably, providing target 
data permanently inspite of the dust generation, and also the LIBS measurements 
when right positioning is achieved. Whereas the LIBS sensor has been calibrated 
using certified lead metal alloy samples, the variety of compositions in the feedstock 
is much larger. In addition to metallic lead, lead in various chemical compounds 
occurs as well as lead-containing non-metallic materials, as for example in Fig. 6 
(right). 
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An extension of the LIBS data evaluation to such materials was worked out based 
on the alloy calibration. The abundance of lead as main material is determined, 
which ranges from above 90 wt.-% in metallic scrap down to about 10 wt.-% in slag. 
In addition, a wide range of other metal elements is determined as shown in Fig. 7 
for a range of material batches (numbered on the x-axis). Each batch consists of 
several tons of recycling material. In addition to lead, other most abundant elements 
are antimony, tin, iron, calcium, and silicon.  

Fig. 7: Results of inline LIBS measurements of lead recycling feedstock batches.

Whereas these results are useful for feeding and controlling the metallurgical 
recycling process, is has to be noted that it is only semi-quantitative at this stage. 
As shown in the graph, the sum of all metal elements is defined as 100% here, 
whereas the light elements which are present in the compounds of oxides, sulphates, 
carbonates, and plastics are not quantified. At the time of the trials, no method for 
deriving reference data over the wide range of materials was available.
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4 Summary and Conclusions
A system for scanning LIBS measurements of the variety of material feedstock 
in metal recycling plants has been developed. It was successfully installed for 
trial campaigns in industrial plants for aluminium, steel, lead production. Although 
specific challenges are found in each individual application case, the universal 
LIBS sensor concept was shown to be applicable in each of the cases. Beyond the 
analysis of single metal pieces, where LIBS is successfully applied for many years 
now, the analysis of complex metal containing materials has been demonstrated. 
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Abstract
In current battery recycling processes different cathode types and anode materials 
are thoroughly mixed, hindering the subsequent extraction of the Critical Raw 
Materials (CRM) they content. However, the prior separation and concentration of 
materials would enhance the efficiency of this process and enable compliance with 
recovery targets. In this study, multi-elemental quantitative analysis by laser induced 
breakdown spectroscopy (LIBS) in combination with Machine Learning techniques 
is proposed to improve this separation. On the basis of these technologies a 
classification model was developed following an iterative procedure. When 
validated to in-line classify Lithium-ion battery (LIB) cathodes according to their 
electrochemistry a success rate higher than 90% was obtained, demonstrating 
the potential of this methodology to foster the recycling of LIB from e-waste as a 
consistent alternative supply of CRM.



246

Sensor-Based Sorting & Control 2024

1 Introduction
Lithium-ion batteries (LIB) vary in size, design and electrochemistry, but essentially, 
all cells contain an anode layer, a cathode layer, and a separator film inserted 
between them, tightly packed, and submerged in Li electrolyte, all together sheltered 
by an outer case (Thompson et al., 2020). The cathode active material is mostly 
composed of lithium metal oxides, where the metallic element is usually Co, Ni, 
Mn, Al, different combinations of them, Fe, P or Ti (Saldaña et al., 2019). On the 
other hand, spherical graphite is generally used as anode material. The imbalance 
between raw material supply and demand in battery manufacturing over the past 
years has led to the inclusion of most of these substances in the fifth Critical Raw 
Materials (CRM) list of the European Union (Proposal for Regulation 2023/0079/
COD). Due to the sharp growth in CRM usage in electric/electronic devices, 
electric vehicle (EV) included, and the limited access of Europe to these materials 
(Charles et al., 2020), LIB recycling has been prioritised in the European legislation 
and policies, after second life applications, as a way of ensuring the secure and 
sustainable supply of materials for a successful mobility transition towards a carbon-
neutral future (European Commission, 2021). 

In line with the above, the global demand for LIB is expected to rise by about 10 
times this decade, reaching to 2,600 GWh in 2030 (World Economic Forum, 2019), 
mostly driven by the stand-out position of the mobility applications. Together with 
these figures, the amount of LIB waste generated every year is sharply increasing 
and it is expected to exceed 1 million tonnes by 2025 (Chakraborty & Saha, 2022). 
To address the secure and sustainable access to secondary raw materials through 
recycling, LIB treatment throughput should be increased (Karali & Shah, 2022). 

However, the recycling technologies have not been developed at the same pace. 
The diversity in LIB composition, the lack of standardization in their design and 
the risks associated to their storage and handling poses important challenges for 
efficient recycling (Toro et al., 2023). Current waste battery collection systems 
produce mixed upcoming streams and sorting processes prior to recycling are 
necessary. Although different battery classification systems (vision, induction, 
X-rays) can recognize battery types (alkaline, zinc-carbon, NiMH, NiCd, Li-ion), 
they do not distinguish the specific electrochemistry of LIB, and manual process 
still dominates the market (Zheng et al., 2023). Regarding material extraction, 
hydrometallurgy is nowadays the main used technology for LIB recycling due to 
the higher recovery rates that can obtain, although pyrometallurgy is also applied 
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(Neumann et al., 2022). Hydrometallurgical processes use specific combinations 
of chemical reactions which performance is highly dependent on the input material 
quality (Weigl, 2022). As a result, previous thorough pre-treatment operations 
are required for active materials preconcentration, habitually including intensive 
shredding and separation stages in which all battery materials are deeply blended 
(Sommerville et al., 2021). Therefore, an additional earlier cathode sorting step to 
classify them according to their chemistry could lead to an increase in the efficiency 
and recovery rates of the LIB recycling processes (Thompson et al., 2021; Zheng 
et al., 2023).

To this regard, the significant development of photonic technologies in recent 
years, together with the improvements in data analysis, have made it possible to 
address challenges in real-time classification of complex mixed materials (Araujo-
Andrade et al., 2021). The presence of carbonaceous substances in electrodes 
makes some advanced sensors, such as Raman or NIR, struggle in detecting 
chemical patterns. In contrast, LIBS technique can virtually detect all chemical 
elements (Rifai et al., 2020). As a result of this and other many advantages (Yang 
et al. 2023), LIBS technique has been broadly investigated over the last years in 
a wide range of applications (Jean-Noël et al., 2020; Kabir et al., 2022). Applied to 
battery technology, LIBS has shown good performance in real-time cathode quality 
control applications. Kappeler et al. (2022) used nanosecond LIBS and univariate 
calibration for depth-resolved concentration measurement, and Pamu et al. (2021) 
determined the composition by applying calibration-free quantitative LIBS. 

However, in contrast with other traditional techniques such as chromatography, due 
to matrix effect and nonlinear laser-substance interactions univariate calibration 
methods show low performance in laser ablation (Song et al., 2022). Alternatively, 
Machine Learning techniques are widely used to model the relationship between 
spectra and measured elemental concentration (Chen et al., 2020; Zhang et al., 
2018). Partial least squares regression (PLSR) is a standard linear multivariate 
method, highly interpretable and low complexity, that can efficiently handle high-
collinearity, high-dimensionality, and limited sample number, which is common in 
spectral data studies. Because of these features, it is commonly used in spectral 
data analysis, such as LIBS and Raman spectroscopy (Han et al., 2021), and its 
performance has been demonstrated to be comparable or even better to more 
complex nonlinear models in several studies (Guo et al., 2019).
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In this work, the application of LIBS analysis together with PLSR multivariate 
calibration to the real-time classification of LIB cathode was explored. 27 waste 
LIB from varied origins and chemistries were selected to train, test and validate the 
classification model. Cathode samples were extracted and analysed by ICP-OES 
to get reference concentration dataset. The classification model was developed in 
an iterative procedure including data pre-processing. The accuracy, precision and 
linearity of the calculated concentration values were compared in order to evaluate 
the goodness of the model prediction. The models that showed the best figures of 
merit were implemented in a sorting prototype to further validate them in a real-time 
application. The results demonstrated how the combination of LIBS spectra and 
Machine Learning algorithms could be successfully applied to the classification of 
cathodes early in the recycling process, as a way of improving the overall efficiency 
of waste LIB treatment.

2 Materials and methods

2.1 Sample preparation
A total of 27 end-of-life LIB (Fig. 1), of 5 different electrochemistries (10 LCO, 5 
NMC, 1 NCO, 1 NCA and 2 LFP), including different combinations (2 LCO-NMC, 1 
LCO-NCA, 4 NMC-NCA and 1 LMO-NMC), were selected. Also varied origins were 
considered, 2 battery cells from electric vehicle packs and 25 cells from electric-
electronic portable devices, such as mobile phones, tablets, laptops or walkie 
talkies. In order to get cathode samples, first batteries were manually opened, 
electrolyte was evaporated, cathode sheets were separately extracted (Fig. 2) and, 
finally, pieces of about 40x70 mm were taken, one from each LIB, under strict safety 
measures.
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Fig. 1. Example of waste LIB used to develop the classification method

Fig. 2. Cathode from a mobile phone prismatic cell unrolled

ICP-OES (Perkin-Elmer Optima 2100 DV) with previous microwave-assisted acid 
digestion was applied as a reference technique for sample elemental analysis. All 
metals contained in cathode active materials were determined but aluminium, since 
current collector sheet material contaminated digested samples. 

2.2 LIBS analysis
Cathode samples were analysed using a state-of-the-art LIBS system (FiberLIBS 
inline by Secopta Analytics GmbH), coupled with a Czerny Turner spectrometer 
(230.295 - 501.264 nm, CCD detector), a 1064 nm DPSS passive Q-switched 
laser (3 mJ pulse energy, < 1.5 ns pulse duration) and complementary standard 
components (mirror optics, optical fibre and external controller). The analyser is 
also provided with a dedicated software that includes several application modules 
that allow to (1) set the operational parameters and acquire spectra, (2) review and 
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pre-process spectra, (3) develop classification models based on PLSR multivariate 
analysis, and (4) apply models in real-time operation to predict the class of the target 
materials according to their elemental composition.

The LIBS system was installed into an automated classification prototype, which 
directed the samples to the laser beam at 0,2 m/s. This system consisted of a 
conveyor belt with adjustable speed, a structure for supporting the laser head at a 
fixed focus distance, and a protective cover, preventing the exposure of operators 
to hazardous radiation. Measures were taken at 100 Hz, the maximum sampling 
frequency, and 2 ms integration time was used. For each measurement 10 spectra 
were averaged, after removing first 2 and last 2 spectra to avoid edge irregularities. 
Given the sample cathode dimensions, for 25 of them 3 measurements were 
obtained, while for the remaining 2 samples only 2 valid measurements were 
retained due to cathode peeling. This made a total of 79 subsamples available to 
build the classification method.

As can be seen in Fig. 3, overall, quite good quality spectra were obtained, 
characterized by well-defined peaks and low signal-to-noise ratio. Nevertheless, a 
drift in the baseline is observed, particularly intense in the last part of the individual 
spectrum, together with sample-to-sample baseline intensity differences.

Fig. 3. Raw spectrum of the 27 samples measured using LIBS system
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2.3 Classification model development
The development of the LIB cathode classification model involved iterative 
process characterized by sequential stages of data pre-processing, model training, 
deployment, and refinement. 

2.3.1 Data pre-processing
First obtained spectral data base was split into training and testing sets in a 1:1 
ratio (37:37). Samples were selected so that in both sets the composition of target 
elements covered the complete measured range. Then, raw spectra were corrected 
by using habitual mathematical transformations, such as normalization, baseline 
correction, noise filtering, and data reducing, to eliminate the multiplicative effects 
and reduce superfluous information introduced to the model. Best classification 
results were obtained by applying the Standard Normal Variate (SNV) normalization 
and the Piecewise Linear Approximation (PLA) baseline correction to remove 
multiplicative non-linear interferences and scaling problems. To apply SNV each 
spectrum is centred by subtracting the mean and then scaled by dividing it by its 
standard deviation, so that each spectrum has a mean of 0 and a standard deviation 
of 1. For the PLA a 20 nm window width and centred nodes were implemented for 
segmentation (Pedrycz et al., 2004). 

Regarding dimension reduction, wavelength ranges containing the characteristic 
lines of the elements included in the calibration were screened, together with those 
in which major differences were observed (Fig. 3). As a result, the following bands 
were eventually removed from the analysis: 392-398, 324-328, 765-770.5, 330-363, 
402-404 and 488-501 nm.

2.3.2 Classification model training
Partial least squares regression (PLSR) is a multivariate linear regression method 
which extracts the latent factors from the factor matrix (spectral data) that account 
for most of the variation in the response matrix (reference chemical composition). It 
is implemented by simultaneously decomposing both matrixes to exclude redundant 
information and find an optimized calibration model (Se et al., 2019). As a result, 
a linear regression is obtained as calibration function for the quantitative analysis.

The PLSR model was trained with 40 spectra subsamples and Co, Ni, Mn and 
Fe data, and then validated using another 37 independent subsamples. Cross-
validation was parallelly implemented as an estimate of the performance of the 
model. The leave-one-out configuration was chosen considering the size of the 
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dataset studied. In this approach a k-fold cross-validation is performed in which 
the k is the number of samples in the set. The optimum number of factors is that 
for which the Root Mean Square Error (RMSE) and the Standard Error (SE) of the 
cross-validation reach a global minimum, or a local minimum with less factors when 
low and noisy regression vector values are attained (Olivieri, 2015). 

2.3.3 Classification model validation
To evaluate the prediction performance and the accuracy of each classification 
model the coefficient of determination (R2), the Standard Error (SE), the Root Mean 
Square Error (RMSE) and the bias of the calibration, the prediction and the cross-
validation were used as figures of merit. Models with highest R2 and lowest errors 
were further validated by in-line applying them in the sorting prototype to the test 
samples.

3 Results and discussion
ICP analysis results showed that the LCO batteries contained 49-54 % Co; the NMC 
9-11 % Co, 15-29 % Ni and higher variable quantities of Mn, 2-13 %; the LFP were 
composed of about 29-27 % Fe and 12-15 % P; the Ni content in NCA was 50 %, 
in contrast with 5 % Co; while the NCO had significantly high Co content, 31 %, 
and 21 % of Ni. The cathodes with different mixtures of active materials showed 
intermediate concentrations between both types of electrochemistries.

Model performance indicators are summarised in Tab. 1. The goodness of the 
quantification differs from one element to another. Highest linearity and lowest error 
figures are attained for Fe quantitation. The linearity is also significant for Co and 
Ni, contrasting with the low values showed by Mn. This element exhibited also 
high RMSE and SE, indicating wide scattering of the predictions, while attaining 
reasonably accurate results. In contrast, estimates for Co and Ni reveal lower 
accuracy and precision. Nevertheless, due to the magnitude of the differences in 
composition between the cathode classes quantification performance was good 
enough to achieve high purity sorting, as it will be shown later in this chapter. 
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Tab. 1: Figure of merit of the optimum PLSR model

CALIBRATION VALIDATION
Element Factor R2 RMSE SE R2 RMSE SE Bias

Co 8 0.984 2.641 2.677 0.826 9.253 8.965 2.713
Fe 9 0.998 0.338 0.342 0.942 1.316 1.260 0.430
Mn 4 0.906 3.128 3.170 0.479 4.419 4.376 0.938
Ni 10 0.999 0.383 0.389 0.809 4.945 3.845 3.172

To accomplish the classification based on the predicted quantities it is necessary 
to set the concentration ranges that define each class. To estimate this ranges 
stochiometric data on lithium metal oxides most habitually applied to battery 
cathodes (e.g., NMC 532, NCA LiNi0,85Co0,15Al0,04O2) were considered (Greenwood et 
al., 2021), together with analysed values, since cathode active material is composed 
also of variable quantities of organic binder and conductive carbon additive(s), such 
as graphite and/or black carbon (Hu et al., 2021). In Tab. 2 elemental concentration 
ranges deployed to classified LIB cathodes are gathered. 

Tab. 2: Elemental composition ranges used for cathode class determination (w%)

Element LCO NMC LFP LMO NCA
Co > 45 > 9 ≤ 0.5 ≤ 0.5 > 10
Fe ≤ 2 ≤ 2 > 2 ≤ 2 ≤ 2
Mn ≤ 0.5 > 1.5 ≤ 0.5 > 0.5 ≤ 0.5
Ni ≤ 0.5 > 0.5 ≤ 0.5 ≤ 0.5 > 0.5

Regarding classification performance, when the model was implemented in the 
real-time validation, 12 samples out of the 13 in the test dataset were correctly 
sorted (Tab. 3). This makes a success rate of 92,3%, if rating as good, for mixed 
chemistries, when the model properly identified one of the classes. If non mixed 
compositions are only considered, 8 out of 9 samples were successfully sorted, 
slightly reducing the classification rate down to 88,9%, which is still high. Still, the 
previous assumption is reasonable since extraction processes are mostly affected 
by elemental composition and other current macro spatial techniques for elemental 
analysis are neither able or struggle to determine the stoichiometry of cathodic 
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blends (Sita et al., 2021). The only cathode that was wrongly classified was a LCO 
sample that was regarded as a NCA because of low Co prediction. In this study 
these two cathode classes were differentiated based only on Co composition, but if 
Al accurate data had been available for the reference samples this would have aided 
in distinguishing between LCO and NCA high Co content cathodes.

Tab. 3: Results for the real-time validation of the classification model

Sample No Reference class Predicted class
01 LCO LCO
02 LCO-NCA NCA
03 LCO-NMC NMC
04 LFP LFP
05 LMO LMO
06 NMC NMC
07 NMC-NCA NMC
08 LCO NCA
09 LCO LCO
10 LCO-NMC NMC
11 LCO LCO
12 NMC NMC
13 LCO LCO

4 Conclusions
Due to the widespread use of LIB in e-mobility and consumer electronics, increasingly 
high amounts of spent batteries are being discarded. These waste streams contain 
relevant quantities of CRM, that, if efficiently recycled, could guarantee a secure and 
sustainable supply of these materials to be incorporated again in the battery value 
chain and assure a carbon-neutral Europe in the future. Regarding current recycling 
processes, a better material classification in the first steps of LIB pre-treatment could 
increase CRM recovery efficiency. 

In this study the joint implementation of LIBS and Machine Learning is proposed to 
develop a real-time classification method that can sort cathode sheets before they 
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are further ground, to avoid intensively blending different chemistries, with each 
other and with the anode and other battery materials. Despite the many advantages 
of this spectroscopic technique for multi-elemental analysis, the quality of LIBS 
data is usually affected by matrix and multiplicative effects. To solve this issue 
multivariate calibration based on PLSR is applied. Here an iterative procedure was 
stablished to develop an optimized quantification model, including tailored data pre-
processing. Once an optimum classification model was trained and tested, it was 
validated in real-time application with test samples. In this trial a success rate of 
92,3% was achieved, considering mixed cathodes positively identified by one of 
their constituents. Just one LOC sample was wrongly identified as NCA. In this 
point, including Al in the calibration method could improve the differentiation of high 
Co cathode classes. 

According to the results obtained in this study it can be concluded that applied to an 
industrial process, LIBS technology together with Machine Learning techniques can 
potentially improve the separation and concentration of CRM, eventually increasing 
the overall efficiency of their recovery from end-of-life LIB.
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Abstract
Sustainability and CO2 reduction are becoming increasingly important. (EU 2023, 
Volkov et al. 2021). Technical solutions are therefore in demand, especially in the 
course of the current climate debate. In addition, raw material prices have been 
rising for years (Bragagni et al. 2021). Reducing CO2 emissions by increasing 
recycling rates is therefore both ecologically and economically necessary. The EU-
funded project ReSoURCE - Refractory Sorting Using Revolutionizing Classification 
Equipment - has therefore set itself the goal of increasing the recycling rate in 
the refractory industry by using advanced sensor equipment. Refractories must 
withstand high temperatures and stresses. Since the requirements vary widely from 
customer to customer and industry to industry, each application requires a unique, 
best-fit-lining concept. As a result, refractory materials contain a diverse mix of 
materials and additives. This versatile chemical composition makes subsequent 
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sorting or recycling complex and costly. Hence - at the present stage – recycling 
is only economically feasible for certain batches and grain sizes. The ReSoURCE 
project uses sophisticated sensors and a high degree of automation to exploit 
currently unusable feedstocks and finally to allow to increase the overall recycling 
rate. The entire recycling process is automated using artificial intelligence (AI) 
-assisted multi-sensor systems consisting of 3D object recognition, a LIBS sensor 
with an integrated 3D scanner and a hyperspectral camera. Achieving the project’s 
goals will save up to 800 kilotons of CO2 and 760 GWh of energy annually in the 
European Union. The increasing use of secondary raw materials will also decrease 
the need for extractive processing in the mining of raw materials, in this case saving 
approximately 1 million tons per year in the European Union. Two demonstrators will 
be set up. One demonstrator will be used to classify and sort single grains, while 
the second will handle and sort fine fractions. The refractory industry is not the only 
one to benefit from the development of this highly automated solution for classifying 
complex material compositions. A practically tested and validated system could be 
deployed in many industry sectors to significantly increase recycling rates, such as 
e.g., in the aluminum or steel sectors.

This project has received funding from the European Union’s Horizon Europe 
research and innovation program under grant agreement No. 101058310 
(ReSoURCE)

1 The Vision
The project aims to significantly reduce CO2 emissions by increasing the recovery 
rate of refractory materials. The basis for this reduction is a fully automated sorting 
plant, which was developed by LSA GmbH in close cooperation with RHI Magnesita 
and will be made available for the project. As part of the project, measurement 
campaigns and adjustments to the system are being carried out with the aim of 
finding the best possible solution for the respective recycling applications in terms 
of the parameterization of the system and the design of the components used. 
The challenge here is the targeted use of sensor technology, which is based on a 
combination of several sensors, their synchronization, and the sorting technology, 
which must mechanically separate complex material geometries. In addition, the 
aim is to recycle fine material with a grain size of less than 5 mm, which cannot 
be recycled back into refractories to date. As a single grain, fine material can no 
longer be picked up by robots. The throughput of the blow-out unit would also 
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be significantly lower. All in all, the system presented here would no longer be 
economically viable for sorting fines. In Demonstrator B, the fines are sorted by 
batch. This means that the fines are enriched rather than classically sorted.

Fig. 1: 3D-CAD image of the automated processing line to identify and sort 
mixtures of spent refractory materials in a wide range of grain sizes.

2 The procedure
Every effort in the field of recycling must consider the economic efficiency of the 
process in operation. The recycling task is therefore different for every use case. For 
this reason, the relevant process sequences were examined for several use cases 
and representative material samples were procured; a key point here for refractories 
is the break-out character, which defines the geometry and also the composition of 
the material after practical use.
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To achieve the project goal of reducing CO2, a life cycle assessment and a techno-
economic evaluation are carried out continuously. A holistic view of the ecological 
and economic situation covers the entire life cycle of the material. In this sense, 
the ReSoURCE project also includes an analysis of waste management, which 
comprises the examination of the individual waste stream collection, transportation, 
representative sampling, treatment, recycling, and disposal. Following this analysis, 
the information collected is summarized in a waste characterization report.

The sorting process is the heart of the value chain and is divided into various stages. 
Firstly, the fractions to be sorted must be identified and specified in detail by the 
end user. Concerning the sorting task, the latter essentially refers to the chemical 
composition. Following this specification, the detectors are selected, designed and, 
as a final step, integrated into the system and parameterized. This step is carried 
out as comprehensively as possible with regard to the sorting task, namely for as 
many variants of the highly diverse refractory material as possible. Different sorting 
tasks can sometimes mean very different chemical compositions. This not only leads 
to a new elemental footprint of each class. It can also lead to the use of different 
element lines for the evaluation of spectra. It can also mean that certain classes 
tend to break into larger or smaller grains when they hit the conveyor belt, which in 
turn affects the discharge unit. Knowing the exact nature of the feed material and 
the desired classes is essential to the quality of the sorting result. In addition to 
the synchronization of the various sensors, the design of the individual sensors is 
also important here. For the most accurate analysis possible, the sensors must be 
adapted to the material flow and microstructure, i.e. the different geometries of the 
objects on the conveyor belt or the coarse ceramic character must be taken into 
account. In the case of LIBS analysis, this means adapting the laser focus in real 
time; in the case of HSI cameras, it means adapting the camera optics. 

3 The System
The entire automated processing line can be divided into three sub-areas. These 
individual assemblies each have a defined purpose and are explained below. The 
order of the individual assemblies in this text also represents the sequence of the 
material flow.
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3.1 Feeding Unit
The feeding unit is housed in a CSC-certified overseas container. Doors and 
service panels are also provided across the full width of the hopper to allow for 
potential intervention and troubleshooting at any point in the process. This allows 
maximum mobility, allowing the system to be used anywhere in the world. Material 
is fed into the system from a hopper at the start of the process. It can be fed by 
a wheel loader or forklift and big bags. The material is then transported out of 
the hopper and separated. In addition to material handling, the bunker contains 
the necessary components such as compressed air generation and filtration. To 
prevent potential problems with dust pollution or environmental contamination, air 
is extracted at various points throughout the process and filtered. The filtered dust is 
then stored in big bags and emptied at defined intervals. The filtered air is released 
into the environment via a chimney fitted with silencers to prevent noise pollution. 
In addition, the entire containers are insulated and equipped with heaters to ensure 
safe operation in winter.

Figure 2 below shows the feeding unit. Starting from the left, one can see the 
chimney for discharging the filtered air, the container with a walk-on platform and 
the Big Bag for collecting the separated dust.

Fig. 2: 3D-CAD image of the feeding unit.
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3.2 Sorting Unit
The sorting area is housed in an overseas container as well. Accessibility to the 
sorting container is important because of the sensor technology housed. In the 
event of a fault, all critical components must be easily accessible. The material is 
first passed under the measuring bridge. In this measuring bridge, the 3D topology 
of each sample on the belt is first determined. The samples are then analyzed with 
two different sensors. A hyperspectral camera captures the entire surface of the 
samples and automatically generates spectra of the measured data. A surface that 
is perpendicular to the laser is selected based on the 3D topology and the laser 
beam for the LIBS measurement is focused on the surface using a 3D scanner. 
Depending on the material, a different number of measurement points is set. These 
measurement signals are also converted into spectra in a spectrometer. With the 
help of AI, a chemical fingerprint can be obtained from each measured sample and 
assigned to the various material classes on this basis. The entire data gathered 
will be merged with the HSI data using AI to enable the samples to be analyzed as 
comprehensively as possible. The material is afterward sorted by three delta robots 
into intermediate collection bins. These bins are assigned to individual product 
classes by a measuring program. Smaller grain sizes are sorted by air discharge 
at the end of the belt. 

A close-up of the Sorting Container is shown in Figure 3 below. The doors for 
maintenance purposes, the collecting bins and the air discharge unit are clearly 
visible.
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Fig. 3: 3D-CAD image of the sorting unit.

3.3 Conveying Unit
The conveyor unit distributes the individual product classes into large containers 
that can be emptied by forklift or front wheel loader. Up to eight different classes 
can be sorted. 

A drawing of the conveying unit is shown in Figure 4 below.
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Fig. 4: 3D-CAD image of the conveying unit.

4 Conclusion and Outlook
The sorting plant design has been finalized and is currently under construction. 
The first LIBS measurement results are promising with regard to the finest possible 
classification of the material. In addition to the Demonstrator A presented here, 
the Demonstrator B for fine materials is being further developed. The combination 
of both systems can have a significant impact on CO2 emissions in the refractory 
industry. In the future, the plant will also be further improved in terms of throughput. 
The project is already providing insight into which components can be considered 
bottlenecks and how to ensure greater scalability.
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Abstract
Laser-Induced Breakdown Spectroscopy (LIBS) is a powerful analytical technique 
that has evolved over the years to become a valuable tool for material analysis and 
sorting. This article explores the working principle of LIBS and its application in 
sorting aluminum alloys, tracing its development from early research projects to its 
current use in industrial scrap sorting.

LIBS utilizes a high-energy laser pulse to create a plasma on a material’s surface. 
This plasma emits light as it cools, and this light contains information about the 
material’s elemental composition. By analyzing the emitted light’s spectral lines, 
researchers can identify and quantify the elements present in the sample, making 
LIBS an excellent tool for material analysis and sorting.

Aluminum alloys are widely used in various industries. Once turned into scrap, it is 
crucial to sort them accurately based on their composition for aluminum recycling. 
LIBS has proven to be an effective method for this purpose. The distinct elemental 
signatures of different aluminum alloys enable precise identification and separation, 
facilitating aluminum recycling, and ensuring material quality within scrap materials. 

mailto:frank.vandewinkel@tomra.com
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Development times for a new sorting technology can vary significantly based on 
complexity, available resources, and market demand. Simpler sorting methods may 
take a few months to years to develop, especially if there’s high market demand 
for a particular solution. More advanced technologies, such as those incorporating 
sophisticated sensor technology like LIBS detection, might require several years 
of research, prototyping, and real-world testing due to their complexity. The 
development of LIBS based sorting for the scrap industry took more than two 
decades:

1  2002 – Research Project SILAS:
The journey of using LIBS for aluminum alloy sorting began in 2002 with the SILAS 
(“Schnelle Identifikation von Leichtmetallen mittels Automatischer Sortierung”, 
Innonet Projekt) research project. Partners in this project – amongst others – 
were RWTH Aachen (former Department for Processing and Recycling [I.A.R.]), 
Fraunhofer Institute for Laser Technology (ILT) and TOMRA. This early effort laid 
the foundation for understanding the feasibility of using LIBS for sorting aluminum 
alloys.

2 2007 – Research Project LASORT:
Building upon the insights from SILAS, the LASORT project in 2007 aimed to refine 
the LIBS-based sorting process. Researchers focused on improving the speed and 
accuracy of alloy identification, making strides towards a practical sorting solution.

3 2010 – Research Project PARILAS:
The PARILAS project in 2010 marked a significant milestone in LIBS-based sorting. 
It aimed to optimize the LIBS system for industrial use, making it robust and reliable 
for continuous sorting operations.
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4 2018 – TOMRA’s Own Development:
In 2018, TOMRA embarked on its independent development of sorting machines for 
the scrap market, leveraging the advancements made in LIBS technology over the 
years. These machines now provide a solution for the recycling industry, allowing 
efficient sorting of aluminum alloys based on their composition.

The evolution of LIBS from early research projects like SILAS and LASORT to its 
integration into industrial sorting machines by TOMRA demonstrates the success of 
scientific innovation in practical applications. LIBS has proven to be a game-changer 
for the aluminum recycling industry, enabling precise sorting of alloys, promoting 
sustainability, and reducing waste. As technology continues to advance, LIBS-based 
sorting methods are likely to become even more efficient and widespread in various 
material sorting applications, contributing to a greener and more resource-efficient 
future.
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Abstract
In recent years precise elemental analysis based on Laser-Induced Breakdown 
Spectroscopy (LIBS) has found its way from the laboratory into industrial applications. 
The availability of long-term stable and cost-effective laser beam sources, as well 
as high computing power for data analysis in real-time, enable applications such as 
sorting and control technology that were not possible a few years ago. In particular, 
the availability of fast evaluation algorithms as a combination of chemometric 
methods and artificial intelligence allows the use of LIBS as precise and long-term 
stable analysis devices in industrial inline applications.

Due to the large energy savings (up to 95%), the recycling of aluminum is an 
important step towards conserving resources. Especially in the field of aluminum 
alloy analysis, LIBS has advantages over other methods (e.g. XRF). Even light 
alloying elements can be analyzed quickly and precisely with LIBS. Recycling at 
the same step of the value chain is crucial for the realization of closed raw material 
cycles. Downcycling and increasing contamination by interfering elements in the 
material flow must be avoided. 
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Three solutions for the recycling of aluminum based on LIBS will be presented 
during the talk: 

•	 Precision recycling into many subclasses

•	 Scrap sorting with high throughput

•	 Fast inline analysis of molten aluminum

Al recycling without downgrading requires a much higher purity of secondary raw 
materials. Contamination of the melt with unwanted or outright detrimental elements 
(e.g. Li ) is a huge liability requiring costly dilution with clean raw materials, or in 
the worst case even rendering the entire melt useless. Therefore, the goal is to 
fine-grain sorting of the scrap metals to feed only such scrap metals back into 
melting which is close to the target melt. In this regard, the current state-of-the-art 
sensing techniques fall short in terms of analyzing alloying elements in the main 
metal mix. SECOPTA-developed MopalLIBS sensor with pre-ablation capabilities 
allows high purity sorting of Al into the main classes (1000-7000) as well as their 
subclasses.  Thus allowing control over quality assurance and process efficiency 
while eliminating feed materials with detrimental elements that could contaminate 
the melt beyond tolerances. With high throughput and precise sorting of the feeding 
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material (scrap, mix alloys), the customer is expected to save approx. 300 Eur/t 
from process benefits.

In terms of inline melt analysis, the goal is to achieve the target melt composition 
as fast as possible. In this field, SECOPTA MeltLIBS sensor has been successfully 
implemented in a famous Al remelter facility in Austria to measure liquid Al melts 
at 600 degree. Positioned directly on the top of the furnace, it monitors alloying 
elements (e.g. Mg, Mn, Fe, Si, Cu, Zn) and report melt composition directly to 
the level 2 system. This allows for electing the proper corrective measures in the 
shortest time and achieving target melt composition as fast as possible. Additionally, 
it saves resources and time by omitting conventional spark analysis. With all the 
resulting process benefits customer has roughly estimated the amortization of the 
device within less than 1 year. 
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Abstract
It concerns the sorting of paramagnetic ores. A special feature of the development 
is the processing of weak useful electrical signals from paramagnetic ores, which 
makes the problem of suppressing industrial electromagnetic interference to be 
relevant. Here is why the sorting system is called precision ore sorting system.

1 Introduction
Leading manufacturers of ore sorting equipment, such as TOMRA and STEINERT, 
are successfully developing in the strategic direction of using universal multisensory 
technologies. The Gamayun Company follows the well-known axiom that there is 
no single effective and universal technology for all types of ores. In this regard, the 
Company decided that it could compete with them by developing only individual 
sensor systems.

A wide range of technical solutions for the preliminary enrichment of ores is known 
(Tsypin, 2015). However, there are a number of difficult-to-enrich ores, such as iron-
manganese (Mazhanov et al., 2021), ores with a very low concentration of useful 
components, which can only be enriched by indirect methods (by correlation with 
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certain minerals) and others. For such mineral resource, it is advisable to develop 
special, narrowly targeted methods.

2 Method
The Company has analyzed a group of known sorting methods based on measuring 
the volumetric content of a useful component in a piece of ore, not just the part 
of component, visible on the surface of the piece. These are technologies based 
on X-ray transmission (XRT), thermal infrared spectroscopy (TIR) and others. The 
Company chose the electromagnetic (EM) technology because it has the greatest 
potential for development. Firstly, this method is one of the “oldest” used in sorters, 
and secondly, it can be significantly improved if to use it in combination with modern 
IT technologies and data processing.

Thus, the 3D-EM method was developed, in which the 3D laser is the controlling 
system, and the matrix of induction sensors of the EM system is the one which is 
controlled. Both systems operate in a consolidated manner, controlled by a main 
computer, which generates controlling operations based on two data arrays: the 
topology of the matrix of location the induction coils in the sensor block and the 
current geometric parameters of moving monolayer of fractionated raw materials. 
The method provides extremely high sensitivity and accuracy in measuring the 
parameters of pieces of ore, containing paramagnetic minerals, while working with 
high productivity in wide size classes.

2.1 Sensitivity
High sensitivity of the system of separation of lump ore mass with weak magnetic 
susceptibility of separating minerals is ensured due to:

•	 the use of special topology of matrix of induction coils, which parameters 
as well as electromagnetic parameters of the coils, are stored in the main 
computer;

•	 the use of 3D laser to create an array of initial data in order to identify 
each piece of ore mass according to the criterion of the coordinates of the 
geometric centers of the pieces relative to the centers of system of coils of 
the sensor block;
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•	 the process of measuring of magnetic susceptibility of pieces is based on 
the pulse method, herewith the data array of 3D laser is the controlling one, 
on the basis of which the management of measurements is being fulfilled for 
individual sensors of the matrix;

•	 the measurement process is ensured by activating only one coil, located in 
a zone of absence of mutual influence from neighboring coils;

•	 each precision measurement operation is the result of subtracting the signal 
from a piece of ore and the electromagnetic background signal measured by 
the same coil in the absence of a piece;

•	 to reduce the electromagnetic background, the original algorithms of digital 
processing are implied, separately for the low-frequency and high-frequency 
sections of the noise spectrum;

•	 the measurement ends with the start of the auto generator and the formation 
of impulse, the duration of which is proportional to the magnetic susceptibility 
of the piece;

•	 then the generated impulse is filled with ultra-high frequency pulses, the 
number of which is a quantitative assessment of the magnetic susceptibility 
of a piece of paramagnetic ore.

2.2 Accuracy
High accuracy of magnetic susceptibility measurement is ensured by introducing 
correction functions on the measured value of the magnetic susceptibility parameter:

•	 the function of adjusting the measurement depending on the actual volume 
of the piece - is implemented according to a monotonically decreasing 
correlation to the measured volume of the piece, with normalization to the 
volume of the piece, which meets the maximum size;

•	 the function of adjusting the measurement depending on the deviation 
caused by the fact that the actual coordinates of the geometric center of the 
piece do not coincide with the coordinates of the center of the induction coil 
- is implemented according to a monotonically decreasing dependency to the 
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measured deviation, with normalization to the geometric location of the ideal 
coincidence of both centers;

•	 function of adjusting the measurement of dependency from the angle, formed 
by the lines: the geometric location of the longitudinal axis of the piece and 
the measuring axis of the coil;

•	 function of adjusting the measurement depending on the features of the 
geometric shape of a piece of ore.

2.3 Productivity
High productivity is already conditioned by use of function of adjustment based on 
the volume of the piece, which ensures the operation of the sorting system in a 
wide range of size fractions of ore pieces. An additional operation that provides a 
significant increase in productivity is an increase in the specific density of pieces 
location (their number per unit of area of the conveyor belt) by controlling the 
moment of activation of the coils.

3 Functioning of the 3D-EM method
The main computer contains necessary information on the topology of the sensor 
block according to Figure 1. High sensitivity of measurements in conditions of 
fluctuating electromagnetic interferences is achieved as the difference between two 
signals (the maximum from the measurement of the piece and the minimum from 
the measurement of the electromagnetic background) according to the formula:

   ∆U=Us-Ub (1)

where:

Us - maximum signal from measuring a piece of ore;

Ub - interference signal measured on the belt in the absence of the measured 
piece.
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Fig.1. Geometric parameters of the matrix of placing induction coils in the sensor block.

The calculated coordinates of the geometric parameters of the pieces of ore in 
correlation to their spatial orientation relative to the coils using the example of an 
i-piece and a measuring n-coil are shown in Figure 2, which is a fragment of Figure 
1. In this case, the signal  consists of the sum of the influence of three factors:

   Ub=Uc+Ul+Ue (2)

where:

Uc - a signal conditioned by the electromagnetic influence of other coils located 
near the n-coil, located in the same row within the radius R1;
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Ul - a signal conditioned by the influence of the magnetic properties of other 
pieces located near the i-piece within the Q zone;

Ue - a fluctuating interference signal, the spectral characteristic of which consists 
of low-frequency and high-frequency sections of the spectrum.

Fig. 2. Coordinates of the geometric parameters of the i-piece of ore when meas-ured by the n-coil.

Fig. 3. Coordinates of the activation delay for the n-coil when the target control task is introduced.
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When measuring the level of background Ub  , for minimal influence of electromagnetic 
factors Uc and Ul  , the following empirical conditions must be ensured:

Uc - there are no other activated coils within the radius R1=(D/2+C);

Ul - The measurement is being carried out within an area of area Q, which is 
formed by the movement of the conveyor belt above n-coil (Fig. 1), taking into 
account the active diameter of coil D2=1,3×D (in this case, in the area of Q, except 
for the piece being measured, there should be neither any other whole piece of ore 
nor part of it)

For minimal influence of the low-frequency component Ue, the time between 
measurements of signals Us and Ub should be minimal. For that, several 
measurements of Ub are performed along the coordinate xn over the duration 
of segment E with coordinates from Y=Yn+(D+C)/2 to Y=Yn-(D+C)/2, while for 
calculations using formula (2), it is accepted the smaller of several measured 
background values.

For minimal influence of the high-frequency component Ue, a method of its 
suppression was used using an exponential filter. Its sense is to smooth out peak 
interference values with special digital signal processing algorithms.

The measurement of Us signal is performing relative to the n-coil measuring axis 
with coordinate Yn. An i-piece with a variable coordinate Yi of the geometric center 
A moves along a constant coordinate Xi. When it reaches the position Yi=Y(1(n)), the 
n-coil is getting activated, which ends after a time τn when the position Yi=Y(2(n)) is 
reached. The total duration τn is functionally distributed into temporary operations: 
direct measurement Δt=(Y'A-Y''A)/V, starting the auto-generator Δt1=(Y1(n) -Y'A)/V and 
stopping the auto-generator Δt2=(Y''A-Y(2(n)))/V. The duration of the measurement 
depends on the size of the piece and the number of pieces per unit area of the 
belt. In addition, determining the value of Δt is an optimization problem, since its 
maximum value allows us to obtain maximum sensitivity of the system, and its 
minimum value allows us to obtain maximum productivity. The range Δt=0,3-2,5 
milliseconds has been established empirically.

High measurement accuracy is achieved by introducing a number of empirical 
correction coefficients K for the measured signal Us:
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K1 - provides compensation of geometric size of the piece Fi by correcting 
Us  according to a monotonically decreasing function depending on its size in the 
range Fmax-Fmin. The sense of the correction is as follows. Let us assume that two 
pieces of maximum sizes Fmax and Fmin contain the same mineral composition and 
are alternately placed at the same point (for example, Xi=Xn) on the measuring axis 
Yn of the n-coil. In this case, the measured signal Us for Fmin will always be smaller 
than for Fmax , although they consist of the same minerals. This fact can lead to an 
error in deciding on a piece (useful or waste). To compensate for a possible error, a 
correction coefficient K1 is introduced:

Us(1)=K1×Us

where: K1= f(Fi  )  – coefficient of a monotonically decreasing dependence on the 
size of the i-piece, its rationing is made to Fmax.

K2 - provides compensation of the output signal Us of the sensor according to 
a monotonically decreasing function depending on the deviation of the geometric 
center of the piece from the center of the coil. The meaning of the correction is as 
follows. Suppose that the same piece is alternately placed at two different points 
with coordinates (for example, Xn and Xn+∆Xi) on the measuring axis Yn. In this case, 
the measured signal is Us for the coordinate Xn+∆Xi will always be smaller than for 
the coordinate Xn, although the same piece is involved in the measurements. This 
fact can similarly lead to an error in making a decision on a piece. To compensate 
for a possible error, a correction coefficient K2 is introduced:

Us(2)=K2×Us,

where: K2= f(∆Xi  ) – coefficient of a monotonically decreasing dependence 
on the deviation of the geometric center of the i-piece from the center 
of the n-coil, its rationing is made to the position of the piece in coor-
dinates Xi=Xn.

K3 - provides compensation of the output signal Us of the sensor according to 
a monotonically decreasing function depending on the angle αi of inclination of the 
axis of the longitudinal dimension of the length Li of the piece to the measuring axis 
Yi. To compensate for a possible error from the geometric location of the piece, a 
correction coefficient is introduced K3:
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Us(3)=K3×Us

where: K3 = f (αi  ) - coefficient, which is a function of the angle αi = |0° ± 90° |, its 
rationing is made from the position of the piece at αi = 90°.

K4- provides compensation for the output signal Us of the sensor depending on 
the features of the planar shape of the piece (the ratio of the length Li and the width 
Wi of the piece) with an area Si – const:

Us(4)=K4×Us

where: K4 = f (Li/Wi  ), its rationing is made in the form of a piece, corre-
sponds to a square Li = Wi.

K5 - provides compensation for the output signal Us of the sensor depending on the 
characteristics of the volumetric shape of the piece (the ratio of the height Hi 
of the piece to its area Si) with a volume vi - const:

Us(5)=K5×Us

where: K5 = f (Hi  /Si  ), its rationing is made in the form of a piece, corre-
sponds to a cube Li = Wi= Hi.

The coordinates, size and shape of the i-piece in relation to the n-coil are 
random, and therefore the formula for the corrected sensor signal U's in the 
general case has the form:

  U's = f (K1 , K2 , K3 , K4 , K5 ) × Us (3)

High productivity is already conditioned by operation of the sorting system in a wide 
range of Fmax - Fmin piece sizes. An additional operation that provides increased 
productivity is the introduction of an additional shift along the Y axis of the moment 
of activation of the n-coil with subsequent additional correction of the K2 coefficient. 
The essence of the operation is illustrated in Figure 3. Namely, with an increase in 
the number of pieces per unit area of the conveyor belt, the likelihood of a situation 
increasingly arises where, if it is necessary to activate the n-coil, for example the 
n - 5 coil is still in the active state. Simultaneous activation of both coils in a zone of 
radius R1 leads to a violation of the condition for the parameter Uc of formula (2). In 
this case, the requirements of the condition for Uc are saved as follows. To maintain 
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the condition for Uc, the active modes of n and n - 5 coils must be separated in time. 
Suppose the n - 5 coil at coordinate Y2(n-5) is already becoming deactivated. In this 
case, the n-coil must begin its activation process only at the Y1n coordinate. In this 
regard, the geometric center of the i-piece turns out to be artificially shifted by the 
coordinate segment ∆Yi, while the deviation ∆Xi of the i-piece radially increases and 
takes on the absolute value ∆Zi. Additional artificial operation entails a repeated 
correction of the K2 coefficient:

   K2' = f (∆Zi  ) (4)

where:  ∆Zi=√∆Xi
2 +∆Yi

2.

Thus, in the 3D-EM system, the following technological parameters have been 
achieved. The sensitivity of magnetic susceptibility reaches χ ~ 10-6  SI units. 
The measurement accuracy provides high resolution for the separated minerals 
(magnetic susceptibility contrast is ≥ 2,5 relative units). And the range of sorted 
fractions is +10...-80 mm.

4 Equipment
The MLS equipment is produced in a modular design and assembled in 20-foot sea 
containers. Figure 4 shows a fragment of the layout of technological units inside the 
container. Such containers are especially relevant in mountainous and inaccessible 
locations. The structures can be used in both mobile and stationary versions. In 
each case, there is an individual configuration of the location of block structures. It 
is also possible to design stationary pre-concentration factories for high productivity, 
which is ensured using several units of MLS.
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Fig. 4. Layout of technological units inside the container.

5 Orientation on preferred mineral resource
The precision 3D-EM sorting system has new qualities: extremely high sensitivity, 
high measurement accuracy and high productivity. The use of these qualities makes 
it possible to involve in the processing process a number of types of ores with weak 
magnetic susceptibility of constituent minerals, which were previously either not 
enriched at all, or the results of their enrichment were not effective:

The ores containing minerals with similar atomic masses, the sorting of which 
requires a tool with very high accuracy (resolution), for example, ferromanganese 
ores of massive texture.

The ores with an extremely low concentration of a useful component, which is 
correlated with non-magnetic or weakly magnetic separable minerals, for example, 
thin gold deposited in deposits with narrow quartz veins.
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The ores containing separable minerals with a low atomic mass of the useful 
component, for example, this is a mineral resource for which X-ray methods show 
insufficient efficiency.

The rare earth metal (REM) ores, in which the useful component is correlated with 
the disseminated or vein texture of minerals dislocated in acidic or ultra-acidic waste 
rocks, the sorting of which requires an instrument with extremely high sensitivity, 
for example, rare earth metals in pegmatite ores. An example of a pegmatite vein 
occurring in granitoids is shown in Fig. 5.

granitoids pegmatite vein

Fig. 5. Photo of a pegmatite vein located in granitoids.

6 Conclusion
The development that we offered is positioned by us as the theme of the conference 
“Development of sensor technologies”. The development is based on the 3D-EM 
method, which is a highly sensitive instrument with high resolution. The method 
is geared to precision sorting of ores containing minerals with weakly magnetic 
properties. The materials in this article explain the physical processes which are the 
subject of the development of the Company’s original software products.
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Abstract
Byproducts from copper alloy production, such as dross, contain high amounts 
of valuable metals. Currently, the recovered coarse fraction of the dross requires 
an energy- and cost-intensive refining process due to its complex composition. 
This paper demonstrates that advanced sorting of the coarse fraction prior to the 
metallurgical stage using an industrial X-ray fluorescence chute sorting system can 
contribute to a more efficient recycling.
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1 Introduction
With rising demands of copper and copper alloys for the renewable energy transition 
and electromobility (Elshkaki et al., 2016), the need for copper recycling is surging. 
The production of copper alloys such as brass, bronze and red brass generates 
valuable byproducts, such as dross, that are currently not sufficiently recycled. 
Dross contains proportionally high amounts of usable metals bound in metallic 
parts and in oxidized form (Hillmann & Lüning, 2023). In order to recover these 
valuable components and to separate the metallic parts and the non-metallic/ oxidic 
parts, the dross is usually processed by mechanical processing techniques, e.g. by 
crushing/ball milling and screening (Kilicarslan et al., 2014). However, the metallic 
coarse fraction removed by screening often consists of copper alloys from several 
melts and therefore must undergo extensive refining processes in which the alloying 
elements are lost (Schlesinger et al. 2022). An alternative approach is to sort the 
material by its alloy specific components (SBASC) to return the alloys to the original 
material cycle by remelting. SBASC requires a material differentiation based on 
chemical composition which is possible using spectrometric techniques, such as 
X-ray fluorescence (XRF). Using industrial XRF sorting systems for copper-based 
materials is not yet common practice. For this reason, this study investigates the 
potential on a mixed coarse fraction in large-scale trials. In addition, a comparison 
with the current refining scenario in terms of resource efficiency and environmental 
impact is made to identify the best available technique.

2 Sorting trials 
A four-ton sample of a mixed coarse fraction with a grain size of 10 to 32 mm (image 
of the material in Fig. 1) was used for sequential sorting trials. 
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Fig. 1. Sample of the coarse fraction (10-32 mm)

After pre-sorting the material by magnetic and eddy current separation, the SBASC 
was carried out in several subsequent stages using an XRF chute sorting system 
(STEINERT CHUTEC® CSS 140 XF L) with upgraded classification software for 
copper-based material. As shown in Fig. 2, seven relevant sorting products were 
recovered in varying proportions. 

Fig. 2. Sorting stage order and mass flows (in tons) of the large-scale trials
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The analysis results in Tab. 1 show that the characteristic alloying elements were 
successfully enriched in the products intended for remelting. In addition, a high 
purity copper product (>98% Cu) could be recovered.

Tab. 1: Composition of the sorting products (relevant elements are highlighted)

Sorting 
product

Chemical composition in (%)

Sn Pb Zn Cu Ni Fe Mn Al

Cu-Al-Ni-Fe 0.10 0.08 0.57 82.45 3.86 4.28 0.81 7.64

Cu 0.40 0.27 0.43 98.34 0.19 0.07 0.02 0.11

Cu-Zn 0.26 1.35 32.23 65.26 0.14 0.19 0.09 0.14

Cu-Zn-Pb 0.60 2.18 31.05 65.11 0.19 0.28 0.12 0.18

Cu-Sn 3.98 1.05 1.62 92.26 0.68 0.06 0.01 0.09

Cu-Sn-Zn-Pb 4.93 5.84 4.60 83.44 0.62 0.09 0.02 0.17

Cu-Ni-Zn 0.63 0.91 17.62 71.95 7.28 0.29 0.41 0.56

Despite the overall good sorting performance, remelting the sorting products still 
requires different levels of dilution by the addition of virgin material or clean new 
scrap to meet alloy specifications. An example is the excess Pb content of 0.08% 
in the Cu-Al-Ni-Fe product, which is often limited to 0.03% for copper-aluminium 
alloys and thus must be lowered. In this context, there are some general physical 
limitations that need to be considered. Apart from the specific properties of the coarse 
fraction, excessive element contents could have been caused by misclassified and 
falsely sorted alloys. As the XRF sorter is designed for high throughput sorting, only 
short measurement times (<10ms) are possible, resulting in the elements being 
detected with less accuracy than, for example, when using a handheld/stationary 
spectrometer. Another limitation that can also affect detection accuracy and the 
sorting result is the air gap between the X-ray unit and the material being analyzed.
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3 Environmental assessment
To make a scientifically based statement about whether the use of a XRF sorter is 
more resource efficient and has less environmental impact than refining the unsorted 
coarse fraction (reference scenario), a comparative life cycle assessment (LCA) was 
performed according to DIN EN 14040 (DIN, 2021).

3.1 Method and assumptions
The comparison requires consideration of the entire recycling chain, i.e. the 
mechanical and metallurgical stages. Besides the energy consumption of the 
individual recycling processes (sorting, remelting, refining etc.), also the additional 
material demand for alloy production is considered by extending the system 
boundary (cradle-to-gate). For the LCA, only the XRF stages 1, 2, 3 and 5 and their 
respective sorting products are observed: Cu-Al-Ni-Fe, Cu-Zn-Pb (incl. Cu-Zn), Cu-
Sn-Zn-Pb (incl. Cu-Sn) and Cu. As this recycling system generates multiple outputs 
(Cu-Al-Ni-Fe is remelted to aluminium bronze alloy CuAl11Fe6Ni6, Cu-Zn-Pb is 
remelted to special brass alloy CuZn32Al2Mn2Fe1, Cu-Sn-Zn-Pb is remelted to 
red brass alloy CuSn5Zn5Pb5, Cu and the sorting residues are refined to copper 
cathodes), the LCA refers to a combined functional unit. To ensure comparability, it 
is assumed that the same amount of copper alloys is also produced in the reference 
scenario.

3.2 Results
Under the assumptions made, SBASC of the coarse fraction using an XRF sorter 
reduces the cumulative energy demand (CED) by about 25% and the global warming 
potential (GWP) by about 21% compared to the reference scenario, in which the 
entire material is refined (see Fig. 3). 
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Fig. 3. Results of the comparative LCA (*1 kg metal consists of 0.856 kg Cu, 
0.078 kg Zn, 0.015 kg Sn, 0.010 kg Al, 0.011 kg Fe, 0.004 kg Ni, 0.023 kg Pb & 

0.003 kg Mn (equal to 0.35 kg copper cathodes & 0.65 kg copper alloys)

The major savings are achieved by remelting the three alloyed sorting products 
and therefore direct recycling of the alloying elements (Zn, Sn, Ni, Mn, Al, etc). At 
the same time, less refining is needed which results in a significantly lower energy 
demand and thus less emissions. The impact of the energy consumption needed 
for the mechanical sorting stage (operation of sorting machines, wheel loader, etc.) 
is negligible. 

4 Conclusions and outlook
In light of decarbonization ambitions, increasing scarcity of resources and/or 
rising regulatory requirements, optimization of recycling processes and thus more 
sustainable metal production is inevitable. Using the mixed coarse fraction from 
copper alloy production residues as an example, the results of the comparative 
LCA confirm the environmental benefits of using XRF sorting systems prior to 
metallurgical recycling processes. By enabling more direct recycling through 
remelting, XRF sorting contributes to increased resource efficiency, a reduced CO2 
footprint and an increased security of metal supply. A detailed evaluation of this 
optimized recycling approach for the coarse fraction, including economic aspects, 
is part of ongoing research.
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Abstract
Sensor-based sorters have revolutionized the way industries handle mineral 
processes, offering increased efficiency, precision and reduced operational costs. 
This abstract explores the pivotal role of data in maximizing the potential of these 
sorters and ensuring optimal performance. Their effectiveness of the various sensors 
relies on data collection, analysis, and interpretation, influencing every stage of 
the sorter’s operation. Data-driven techniques calibrate and configure sorters 
during installation for accurate sorting, with real-time data continuously collected 
and processed for instant reactions to changing conditions. Data analytics identify 
sorting process patterns, allowing customers to fine-tune for improved efficiency. 
Historical data analysis predicts maintenance needs, reducing downtime and costs. 
Remote monitoring and control systems, empowered by data, enable customers to 
manage their sorter operations from anywhere. Real-time alerts and notifications 
ensure prompt responses to anomalies or breakdowns, further minimizing downtime 
and maximizing productivity. In conclusion, data is crucial for sensor-based sorter 
success, ensuring optimal sorting accuracy, cost reduction, and sustainability. 
Future advancements in sensor technology and data analytics promise even greater 
optimization opportunities. Integrating data-driven solutions like TOMRA Insight into 
sorters is critical for achieving operational goals effectively.
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1 Introduction
Sensor-based sorting is attracting increasing interest in various industries. In recent 
years, more and more equipment has been installed in high-capacity production 
environments (Robben & Wotruba, 2019).  The various suppliers of sensor-based 
sorting systems are integrating these sorters into complex processes where optimal 
operation depends on experience, such as in recycling and mining (Jacoby, 2022). 
Customers are getting used to the operation of sensor-based sorting systems and 
are starting to gain experience in operating them. It is possible to integrate the 
systems into the plant control using standard industry interfaces like Open Platform 
Communications (OPC) and Modbus. But is this data transfer sufficient to operate 
the systems optimally? Can it be used for plant optimization? Sensor-based 
sorting systems generate an unprecedented amount of data, including material 
characteristics, sorter health information and equipment performance. Operational 
effectiveness depends heavily on the analysis and interpretation of this machine 
data.

Throughout the history of sensor-based sorting, the focus has been on the sorting 
decision. A lot of data was broken down to a yes or no result, eject or non-eject. 
This was necessary to make a decision in milliseconds with the computing power 
available at the time. As a result, only limited machine data and information was 
made available to customers. With the development of computing power and 
additional software tools, this is now changing without neglecting sorting. It is now 
possible to use data in parallel to make processes visible and transparent. It must 
now be used. Data plays a key role in every stage of the sorter’s operation, from 
initial setup to ongoing maintenance and optimization. During installation, sensor-
based sorters are calibrated and configured using data-driven techniques to ensure 
accurate sorting. In addition, real-time data is continuously collected and processed 
as materials pass through the sorter, allowing immediate response to changing 
conditions. 

The following sections summarize the types of data and measurements that are 
necessary to assist our customers in the use of our sensor-based systems.
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2 How to unlock the potential
One way to unlock the potential of a sensor-based sorter is to integrate it with 
a cloud-based customer portal to make the data transparent and accessible to 
all stakeholders. At TOMRA, we have our cloud-based customer portal, called 
TOMRA Insight, to give our customers secure, easy, and fast access to the data 
their equipment generates during operation, but also to give them access to 
additional services and information around their sorters. TOMRA Insight provides 
the customer with unprecedented near real-time visibility into the sorting process 
(TOMRA eBook, 2023). This visibility is invaluable, allowing authorized personnel 
to remotely monitor their operation and make timely decisions based on live data 
from anywhere, at any time. Whether tracking throughput, identifying bottlenecks, 
or monitoring sorting accuracy, customers gain a comprehensive understanding 
of the sorter’s performance. Remote teams and TOMRA experts can seamlessly 
collaborate, share data, and gain insight into the efficiency of the sorting process, 
by looking on the near-real time data and historical data. 

3 The type of data is important
Data at Rest and Data in Motion refer to different states of data within a system, and 
understanding these concepts is critical to ensuring the security and functionality of 
a sensor-based sorter in a cloud-based customer portal (cf. Fig. 1).
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Fig. 1: Types of digital data, differences between Data at Rest and Data in Motion [TOMRA eBook, 2023]

Data at rest (non-real-time data) or machine-related data often includes 
documentation, service, and operator manuals. Operators and technicians no longer 
need to waste time searching for the right machine documentation because it is 
digitally available on their mobile devices. 

On the other hand, data in motion refers to information that is actively being 
transmitted or moved between systems, networks, or components. In the context 
of a sensor-based sorter in a cloud-based customer portal, this includes real-time 
data from sensors. 

Currently, at TOMRA, we have categorized the data in motion for our systems into 
the following categories [3]:

•	 Material composition statistics,

•	 Analytical statistics,

•	 Production statistics, and

Machine health data.
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3.1 Material Composition Statistics 
This information allows users to monitor trends, e.g., in the composition of incoming 
material (Fig. 2), showing purity levels and detected defects (TOMRA eBook, 2023). 
Accurate material composition data ensures that the final product meets specified 
requirements. It allows continuous monitoring of the sorting process. Any deviations 
or anomalies can be quickly identified, allowing timely adjustments and minimizing 
production downtime.

Fig. 2: Exemplary visualization of Feed Composition (TOMRA Insight portal). 
Changes over time in the composition gives feedback on the feed quality.

3.2 Analytical statistics
This type of statistics helps the user optimize the use of the sensor-based sorter. 
For example, particle size distribution statistics (Figure 3) can be used to identify 
material preparation challenges. Belt occupancy information (Fig. 4) can be used to 
identify infeed blockages or to optimize material distribution across the full sorting 
width. These metrics are an excellent tool for monitoring whether your machines 
and processes are running optimally (TOMRA eBook, 2023). 
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Fig. 3: Exemplary visualization of a PSD (Particle Size Distribution) (TOMRA Insight portal)

Fig. 4: Exemplary visualization of belt occupancy visualized as heatmap (TOMRA Insight portal)
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3.3 Production Statistics
Actual sort statistics visualize calculated sort fractions in different metrics. Examples 
include: 

•	 Monitoring of trends in capacity (Fig. 5),

•	 Monitoring of changes in ejection over time based on different input materials,

•	 Summary of production data for selected periods (Fig. 6).

Fig. 5: Exemplary visualization of throughput changes over time (TOMRA Insight portal)

Fig. 6: Exemplary visualization of a feed fraction as a mass balance (TOMRA Insight portal)
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3.4 Machine health data
While a sorter is running, it generates data not only about the product being sorted, 
but also about its own operating status, availability, and condition. Collected data 
such as vibration, temperature, air pressure (Fig. 7), and light intensity, combined 
with machine alarms and warnings, allows for machine performance and prediction 
of machine part failure (TOMRA eBook, 2023). This type of data helps prevent 
unnecessary downtime. 

Fig. 7: Exemplary visualization of Air Pressure (TOMRA Insight portal)

Overall Equipment Effectiveness (OEE) is a key performance indicator used in 
manufacturing and other industries to assess the efficiency and productivity of 
equipment and processes. The importance of OEE lies in its ability to provide 
a comprehensive view of how well a production system is performing. Using 
information from the sorter, it is possible to provide feedback to the customer on 
availability, performance, and quality. It provides a single, easy-to-understand metric 
to evaluate how well a machine or process is running. In particular, the visualization 
of losses helps to identify specific areas for improvement (Fig. 8).
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Fig. 8: OEE (Example for Availability and Performance in TOMRA Insight Portal)

4 Anomaly Detection for Early Problem Solving (Rapid 
Response Mechanisms) 

The combination of the above-described information the machines can deliver and 
the use of intelligent notifications and other visual alarms helps our customer in 
the daily use of the sorters. It is important to take faster action when a problem 
occurs. Timely detection and reaction of anomalies is critical to prevent downtime 
and optimize production in mining operations. Anomaly detection algorithms, 
when integrated with sensor-based sorting technologies, enable rapid response 
to equipment malfunctions, process deviations or material inconsistencies. This 
proactive approach increases overall reliability and maintains consistent output 
quality.

5 Conclusion & Summary
In conclusion, combining sensor-based sorters with advanced data-driven 
solutions has made material sorting in various industries more efficient, accurate 
and cost-effectiveness. The technologies itself have significantly changed how we 
recycle, mine, and process food. Various sensors play a crucial role in detecting 
and separating materials based on their properties. From initial calibration and 
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configuration to ongoing maintenance and optimization, data-driven techniques 
ensure accurate sorting. Real-time data collection and processing enables 
immediate responses to change conditions, promoting adaptability and improving 
overall system performance.

Today, however, it is important to make the data visible and to work closely with the 
customer when dealing with sensor-based sorters. With today’s capabilities, it is 
possible to make much more data available to all parties involved in near-real time 
from the initial yes/no decision, and our TOMRA Insight solution is a great platform 
to present the now available additional information to the customer.

Beyond the operational aspects, data analysis is proving to be a powerful tool for 
customers. Identifying patterns and trends in sorting processes enables continuous 
improvement in accuracy and efficiency. Historical data analysis helps predict 
maintenance needs, reduce downtime, and optimize operating costs. In addition, 
data-driven strategies reduce environmental impact by promoting waste reduction, 
recycling optimization, and resource recovery.

To unlock the full potential of sensor-based sorters, integration with cloud-based 
customer portals is key. The TOMRA Insight platform example this approach, 
providing secure access to machine data and additional services. Transparency into 
the sorting process provides unparalleled visibility, enabling remote monitoring and 
informed decision-making in real time. The categorized data, which includes material 
composition statistics, analytical statistics, production statistics, and machine health 
data, provides a comprehensive understanding of sorter performance.

Overall Equipment Effectiveness emerges as a critical performance indicator, 
providing a holistic view of equipment and process efficiency. Visualization of losses 
helps identify specific areas for improvement, enhancing the overall assessment of 
machine performance.

In the quest for operational excellence, anomaly detection becomes paramount. 
Rapid response mechanisms, facilitated by intelligent notifications and alarms, 
ensure early problem solving. This proactive approach not only increases reliability, 
but also maintains consistent output quality, which is critical to the success of 
sensor-based sorting technologies.

Looking ahead, the future holds exciting prospects as sensor technology and data 
analytics continue to advance. The integration of data-driven solutions, such as 
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TOMRA Insight, will play a key role in helping customers achieve their operational 
and sustainability goals. 
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Abstract
In current mining procedures a relatively small percentage of the mined material 
is sampled and chemically assayed, and the results are only representative on 
volumes produced over multiple days to months. On shorter time scales, this could 
lead to incorrect decisions on for example ore-waste designations, meaning that 
ore grade materials are sometimes dumped on waste piles. The issue of sampling 
representativity is significantly reduced if real-time sensors would be used to scan 
a much larger part of the mined material. It is expected that such an approach 
can significantly improve resource efficiency, which is critical in securing a mineral 
resource supply for future generations.All sensor technologies have restrictions on 
the minerals and/or elements that can be detected of inferred. This is caused by the 
physical mechanisms behind the technology and depends on mineral concentration 
and compositional heterogeneity of the ore. Since nearly every ore deposit in the 
world is unique in composition and characterized by different geological features that 
drove mineralization, no one-size-fits-all sensor solution is available. This makes 
it difficult for mining professionals to find suitable sensing technologies that can 
help them solve problems and improve processes for their specific ore types. To 
bridge the gap between ore sensing research, sensor technology providers, and 
mining industry, an open-access knowledge base is being developed covering all 
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the ins and outs of using sensors to scan ores in mining. The goal is to support 
development and integration of ore sensing applications and thereby contribute to 
a more sustainable utilization of mineral resources.

1 Introduction
More and more mining companies are becoming aware of the potential benefits of 
sensor-based ore sorting and process optimization. This is reflected by a growing 
number of sensor systems that are available on the market for applications such 
as drill hole logging, conveyor belt scanning, sensor-based ore sorting, mine wall 
scanning, etc.. In order to evaluate and compare the potential benefits of these 
systems for a specific mining operation, it is important to understand what kind of 
information is supplied by the sensor and how it can be used to improve mining 
processes. Regarding the sensor this requires knowledge on how information is 
derived from the raw sensor data, how the measurements represent the material, 
and which limitations apply. For process improvement understanding is required on 
what the current source of information is on the composition of mined materials and 
how this represents the mined ore volumes.

Little information is currently available for mining professionals on how to evaluate 
and benchmark sensor technologies and applications for scanning ores. Instead, 
they need to rely on technology suppliers to correctly inform them on the feasibility 
of sensor systems for their specific ore types and problems. However, technology 
suppliers may be biased in their evaluations and may not fully understand the 
implications associated with scanning ore materials with variable and heterogeneous 
composition. 

In order to support further development and integration of ore sensing applications, 
there is a need for an independent platform where mining professionals can acquire 
more information and knowledge on real-time sensing opportunities. This paper 
aims to address some of the key concepts associated with using sensors to scan 
ores in mining and launches an initial version of such a platform.
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2 Current source of ore grade information
In metal mining excavated materials are usually designated as ore or waste based 
on inspection by a geologist, resource model estimations, and grade control 
samples. The resource model is produced by mapping the geology and performing 
geochemical analysis on samples that are commonly collected through drilling. In 
the model, an ore deposit is often represented as a three-dimensional array of 
blocks and the characteristics of each block are estimated from the samples by 
using a geostatistical approach (Sinclair & Blackwell, 2002; Rossi & Deutsch, 2014). 
The appropriate size and shape of the blocks mainly depends on the spacing of 
the samples, the size of geologic features, and the required precision of the block 
estimates. Additionally, mine engineering requirements such as bench height and 
equipment size can affect the chosen block size (Rossi & Deutsch, 2014).

A large portion of the samples that are used to create the model are collected during 
the exploration of an ore deposit. Sampling is aimed at determining the quantity 
and distribution of metals that define ore value and potential mining profitability. 
Collecting samples is an expensive process since it often requires drilling in 
environments that are not easily accessible. Because of this, the number of samples 
is gradually increased and carefully balanced against the precision of the resource 
model (Sinclair & Blackwell, 2002; Koppe et al., 2017; Drumond et al., 2020). The 
goal is usually to permit classification of the deposit for reporting as a certain type of 
ore resource or reserve, as defined by mining standards and codes such as JORC 
(JORC, 2012). Sample number requirements to obtain a certain precision heavily 
depend on the geologic complexity and continuity of the mineralization that formed 
a deposit, and therefore differs between deposit types.

When a mine is in early production, resource models are often based on thousands 
of samples collected from a regular grid of drill holes at a spacing that is usually in 
the order of tens of meters. Analyses are performed to proof that the models provide 
reliable estimates of the entire mineral resource, and can be used to develop a long-
term mine planning. However, precision of the estimates of the individual blocks of a 
model is usually poor and unrepresentative of ore grade variations at scales below 
monthly mined volumes (Sinclair & Blackwell, 2002; Rossi & Deutsch, 2014). For 
many mining operations such modelling performance is sufficient since it permits 
production planning and reconciliation on a monthly or quarterly basis, which meets 
their reporting periods to investors.
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As mining progresses, resource models are usually updated with production data 
and additional grade control samples. These grade control samples are obtained by 
additional drilling or by sampling cuttings from so called blast holes that are drilled 
for charging with explosives. Updating the model with grade control samples allows 
the block size to be reduced and increases model precision to permit representative 
estimation of daily to weekly mined volumes (Rossi & Deutsch, 2014). The improved 
model based on grade control samples is often also referred to as the grade control 
model.

Since grade control sampling is performed while the mine is operating and required 
to meet certain production targets, there are strict time constraints on the collection 
of these samples. Additionally, the geochemical analysis of samples by laboratories 
is also under pressure because the results need to be available as soon as 
excavation of the targeted blocks starts. Because of these time constraints, the 
number of collected grade-control samples does not always meet the requirements 
for obtaining representative block estimates. Investments in grade control may 
also depend on the performance of the mining operation and the need to improve 
production rates.

The significance of grade control sampling also depends on the characteristics of 
the portion of the deposit that is being mined. If mining is taking place in a zone 
where the resource model indicates a high confidence that ore grades are well 
above or below the economic cut-off grade that defines ore and waste, grade control 
sampling probably won’t affect decisions on ore-waste designations. However, apart 
from distinguishing between ore and waste many mines also distinguish different 
ore types based on grade, the presence of toxic components, oxidation state, or 
the occurrence of deleterious minerals that affect metal extraction. In this case, 
grade control also plays an important role in providing mineral processing facilities 
with the correct ore types in order to operate efficiently. Grade control is sometimes 
also performed during or after excavation by sampling of blasted ore piles, truck 
loads, conveyor belts, or stockpiles. In this case, ore grades can no longer be 
estimated by geostatistical approaches based on geological features and ore grade 
continuity because no spatial information is available for the selected samples. 
Instead, the principles of sampling theory to obtain representative results for bulk 
material volumes are important here (Abzalov, 2016). If properly executed, bulk 
grade information can still be fed back into the resource model for reconciliation 
purposes and improvement of future estimates.



317

The RockDataAcademy

3 Real time sensing techniques and applications
Sensors can be used at all stages of the mining value chain to assist in the rapid 
characterization of the composition of ore materials. Figure 1 presents an overview 
of this value chain and the various sensor opportunities that exist. Certain mines 
already use some of the applications in this figure or are developing them together 
with technology providers. However, all mines can likely further improve their 
processes by implementing more sensor applications.

Real-time sensing applications are defined here as those that acquire information 
about the properties of a material without physically removing samples or sample 
preparation and within a time period that allows the information to be used for decision 
making (Dalm, 2018). The “real-time” scanning speed in this context depends on the 
target of decision making. This can vary from scanning ore particles within several 
milliseconds for particle-by-particle sorting to mapping a rock pile within a few hours 
to allow the information to be used for grade control and production planning.
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Fig. 1: Opportunities for sensor applications in the mining process (Dalm, 2018).
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A variety of sensor systems is currently available on the market for the applications 
shown in figure 1. All of these systems rely on a specific sensing technology that 
can be used to detect a material property such as colour, density, mineralogy, or 
chemical elements. Table 1 presents an overview of material properties that can 
be detected with the sensing technologies on which most commercially available 
scanning systems rely.

All of the technologies shown in table 1 have restrictions on the minerals and/or 
chemical elements that can be detected of inferred. This is caused by the physical 
mechanisms behind the technology and depends on mineral concentration and 
compositional heterogeneity of the ore. The X-ray fluorescence (XRF) technology for 
example can be used to detect the concentration of chemical elements in a material. 
The ability to detect a certain element is first of all limited by the concentration, 
since a minimum quantity is required in order to receive a signal from that element. 
This phenomenon is also referred to as the detection limit. The detection limit is not 
the same for all elements, meaning that certain elements can be detected at lower 
concentrations than others. Additionally, all elements with atomic weights that are 
lighter than magnesium cannot be detected with XRF at all (Beckhoff et al., 2007).

The detection limit of an XRF sensor is also affected by the spot size on which 
measurements are performed in relation to the crystal or grain size distribution of the 
individual minerals within the rock. If this spot size is small (e.g. several millimetres 
in diameter), it is likely that elevated concentrations of certain minerals occasionally 
occur within that spot. This means that very low concentrations can sometimes still 
be detected by taking a sufficient number of measurements at different positions 
throughout the surface of a rock or ore pile.

Another effect that influences the detection capabilities of an XRF sensor is the so 
called matrix effect. The matrix effect is a phenomenon in which the measured signal 
of a certain element depends on the overall composition of the material. For a fixed 
concentration of 1% copper for example, a different signal intensity is measured 
when it is within a mixture of sulphide minerals than when it is in a mixture of oxide 
minerals. Such a dependency on overall composition can be accounted for through 
calibration of the sensor on representative samples. However, this may require a 
significant amount of work to be done before the sensor can be used for measuring 
composition of any ore material. This is especially the case when many different rock 
types occur at a certain mineral deposit since all compositional variability should be 
included in the sample set on which calibration is performed.
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All mineralogical and chemical sensor technologies listed in table 1 are affected 
by detection limits and matrix effects. Because of this, feasibility studies are 
always needed to determine whether a certain sensor can be used to detect the 
material properties of interest for a specific ore deposit. Additionally, it needs to 
be investigated if sufficient precision can be achieved in order to improve material 
classification and decision making.

Physical 
property

Sensor 
technology Measured effect Detected material 

property

Reflectance

Reflectance 
spectrometry (UV-

VIS-NIR-SWIR-
MWIR-LWIR-FIR)

Mineral absorption 
features Mineralogy

RGB imaging Visible 
appearance

Visible 
appearance

Luminescence 
(emission) LIF & XRL Mineral 

fluorescence Mineralogy

Raman Raman scattering Mineralogy

XRF & LIBS Atomic 
fluorescence Chemistry

PGNAA & Natural 
radioactivity

Atomic 
radioluminescence Chemistry

Incandescence 
(emission) TI Blackbody 

radiation
Heat capacity & 

transfer

MWTI
Blackbody 

radiation after 
microwave heating

Heat capacity & 
transfer

Transmitted 
radiation DE-XRT & DE-γRT Transmitted X-rays 

/ γ-rays Density

MWT Transmitted 
microwaves Moisture content

Thz-TDS Transmitted 
terahertz radiation

Absorption & 
refraction index

Electric 
conductivity Inductive

Changes in 
electromagnetic 

field

Electric 
conductivity
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4 Considerations on data precision

4.1 Current practice
For both the generation of resource models as well as the sampling of excavated 
bulk ore volumes, theories exist that link sampling procedures to the precision of 
the obtained results. For the generation of resource and grade control models, the 
uncertainty of block estimates can be related to drill hole spacing and the used 
block geometry (Koppe et al., 2017; Afonseca & Miguel-Silva, 2022). Considering 
resource models, it is usually acceptable if the estimates of ore grade and tonnage 
are ±15% at a 90% confidence interval over a monthly or quarterly period (Afonseca 
& Miguel-Silva, 2022). For grade control models, it is more common to balance the 
costs associated with the misclassification of ore and waste blocks to the costs of 
acquiring more samples (Afonseca & Miguel-Silva, 2022; Martínez-Vargas, 2017). 
Single block misclassification rates of around 10% are normal in this case.

Overall, the precision of ore grade information depends strongly on the sampling 
density and the geologic complexity of the ore deposit. The combined volume of all 
samples that are gathered during the life of a mine usually represents only 0,001% to 
0,0001% of the entire deposit (Sinclair & Blackwell, 2002). When ore volumes in the 
order of monthly or yearly productions are considered, such a low representativity 
is acceptable because the drill holes from which samples are acquired are well 
spread throughout the entire volume. For smaller volumes though, accurate ore 
grade estimations become increasingly more difficult because the distribution of 
samples is less representative. This can be mitigated through a well-defined grade 
control strategy, which can provide representative estimations for volumes produced 
over one or several days. However, for hourly mine productions the uncertainty of 
ore grade information is considered to be relatively high. This is especially the case 
for deposits with a high degree of heterogeneity where the geological features that 
drove mineralization are smaller than the drill hole spacing at which samples are 
collected. This is common for many hydrothermal ore deposits where mineralization 
takes place along veins and fractures with widths in the order of several centimetres, 
while the drill hole spacing is multiple meters (Pirajno, 1992; Afonseca & Miguel-
Silva, 2022). This means that when mining takes place in a zone where grades are 
close to the cut-off grade, frequent misclassification of ore and waste likely takes 
place for small batches such as truck loads or hourly productions.
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In the case of bulk ore sampling, the relative sampling variance due to fundamental 
sampling error can be related to the mass, mineralogy, particle size distribution, and 
heterogeneity of the ore (François-Bongarçon & Gy, 2002; Minkkinen & Esbensen, 
2019; Abzalov, 2016). A relative standard deviation <10% on the obtained results is 
often considered acceptable (Abzalov, 2016; Thompson & Howarth, 1978).

4.2 Potential improvements with real-time sensing
The improvement on data precision that real-time sensors can provide is related 
to the high speed at which data can be gathered with the currently available 
sensing technologies. This provides opportunities to greatly enhance sampling 
representativity on large volumes of ore material, which is considered to significantly 
decrease sampling errors. An example of how sensors can improve data precision is 
on the sampling of blast holes in open pit mining for the generation of grade control 
models. This is currently performed by physically taking a sub-sample of the cone of 
cuttings produced from drilling in order to determine ore composition along the entire 
depth of the drilled hole. However, it is also possible to use sensors to measure 
the chemical or mineralogical composition of cuttings while drilling is taking place 
(Timegate, 2022). Such an application can likely provide this information at intervals 
of several tens of centimetres of drilled depth. Considering that these blast holes are 
usually around 10 to 15 meters deep, this may increase the number of data points 
along the depth of the hole by a factor of 30 to 80. This means that more information 
is provided on the compositional variability of the ore within a mining block due to the 
occurrence of relatively small geological features, which can be used to improve the 
representativity of the grade control model. Additionally, the information is instantly 
available and it is no longer needed to wait several days until samples have been 
processed and analysed in a laboratory.

Another example where sensors can improve the precision of information about 
ore composition is conveyor belt scanning. On a conveyor belt, the surfaces of 
particles originating from a mining block will be exposed and can be scanned with 
various sensor technologies. A typical mining block in open pit mining of 25 x 25 x 
15 meter represents a volume of 9 375 m3 and a weight of around 25 000 tonnes at 
a common rock density of around 2,7 g/cm3. At large open pit operations conveyor 
belt transport speeds can typically reach 5000 tonnes per hour, meaning that it takes 
around 5 hours to transport the entire block. Certain sensing technologies, such 
as laser-induced breakdown spectroscopy (LIBS), can be used to take up to 100 
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measurements per second (e.g. Elemission, 2023). This means that over a 5 hour 
period, a LIBS conveyor belt scanner can acquire 1,8 million measurements that are 
randomly distributed throughout the volume of the mining block. Considering that a 
single estimate with a relatively low precision for a block results from conventional 
grade control models, such a conveyor belt scanning application can likely provide 
significant improvements in data precision.

Even though the precision of single sensor measurements is usually not as high as 
those of geochemical analyses performed in a laboratory, the averaging of many 
sensor measurements will compensate for this. Only when a bias occurs between 
the sensor data and the actual composition of the ore, a lower precision of the 
sensor data may result. However, any bias can be eliminated through well-defined 
calibration procedures. This is also the reason that proper calibration of sensors is 
extremely important when developing real-time sensing applications. Calibration 
needs to be performed on samples that represent all the variability of rock types 
that occur at a certain mine in order to account for any matrix effects that influence 
the sensor detections.

5 Benefits of utilizing sensors
Apart from improving the precision of currently available data on the composition 
of mined ores, sensors also provide more information about the compositional 
variability of the ore. Smaller material volumes can be characterized, which can be 
used for optimizing downstream metal extraction processes and bulk ore sorting to 
eliminate waste or separate ore types (e.g. high vs low sulphur, deleterious minerals, 
etc.). Additionally, data can be fed back into grade control models to enhance the 
precision of these models and improve the future planning of resource extraction 
(Dalm, 2018).

Certain sensor technologies are able to acquire data so fast that they can be 
used for particle-by-particle sorting on sensor-based sorting machines. On such 
machines, individual rock particles are scanned by sensors and are subsequently 
sorted by using jets of compressed air. These machines can therefore be used as a 
pre-concentration or pre-processing step to eliminate waste or contaminants from 
the feed to mineral processing facilities (Lessard et al., 2016).
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The potential benefits of real-time sensing applications in mining depend heavily on 
the geologic complexity and grade distribution of an ore deposit. Considering the low 
representativity of current grade control models for relatively small material volumes, 
it is expected that significant improvements in material classifications and ore-waste 
designations are possible. This is also shown by the work of Buxton & Benndorf 
(2013), who present a semi-quantitative analysis of the potential economic benefits 
of various sensor applications. However, apart from economic benefits there are 
also potential benefits in terms of resource utilization. This is because improvements 
in ore-waste designations results in a lower amount of ore being dumped on waste 
piles, and therefore increases the total metal recovery from ore deposits. Such 
improvements in resource utilization are likely critical in securing a mineral resource 
supply for future generations.

6 Conclusions
Compositional information about the materials that are being excavated at most 
metal mines around the world is only representative on scales ranging from multiple 
days to monthly produced volumes. On smaller scales such as hourly production 
rates or truck load volumes, uncertainties on the available information such as ore 
grade are high. This likely leads to regular misclassification of small batches as 
ore or waste, resulting in metal losses and wasted energy on processing barren 
materials.

Various sensor applications are available nowadays that are able to significantly 
improve the precision of compositional data for relatively small ore volumes. All of 
these systems rely on a certain sensing technology such as the ones presented in 
table 1. The feasibility of each of these technologies to detect a specific material 
property of interest such as ore grade strongly depends on the characteristics of 
the ore deposit at which they are applied. Since nearly every ore deposit in the 
world is unique in composition and associated with different geological features that 
drove mineralization, no one-size-fits-all sensor solution is available. This makes 
it difficult for mining professionals to find sensing technologies that can help them 
solve problems and improve processes for their specific ore types.

To bridge the gap between ore sensing research, sensor technology providers, and 
mining industry, an open-access knowledge base is being developed covering all the 
ins and outs of using sensors to scan ores in mining. It aims to address topics such 
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as the benefits of ore scanning and sorting, selecting suitable sensing technologies 
for specific ore types, investigating analyser and sorter feasibility, sensor data 
analytics and calibration, and data-driven process optimization. It will also list and 
categorise sensor equipment suppliers by scanning application and type of sensor 
technology. The platform will be completely free and accessible for everyone. The 
goal is to support development and integration of ore sensing applications in mining 
and thereby contribute to a more sustainable utilization of mineral resources.

The first version of the knowledge base is available at: 

https://rockdataworks.com/rockdataacademy/.
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