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A B S T R A C T   

The large-amount production and application of plastics since the 1950s has led to different environmental 
problems, and the production amount is still increasing. In 2015, 79 wt% of all plastic waste was accumulated in 
landfills or the natural environment. Due to their negative influence to the environment, the problems of 
landfilling and marine litter need urgent treatments. Accordingly, measures like excavation of landfill sites and 
ocean clean-ups were conducted to reduce their environmental influences and move further towards a closed 
loop of material cycles. For a possible recycling, the valuable material fractions need to be separated from other 
materials. Besides, to ensure a high-quality recycling and enable the different recycling processes of plastics in 
different degradation levels, it is necessary to separate degraded and non-degraded plastics. In this study, the 
possibility to classify and sort landfill and marine litter plastics is investigated. For this purpose, waste plastics 
from different origins (lightweight packaging (LWP) waste, landfill, and marine litter) were collected and 
analyzed with the state-of-the-art technology in sorting plants: near-infrared spectroscopy. With self-developed 
programs, the classification possibility and performance was determined. The classification accuracy of degraded 
plastics (from landfill and marine litter) is improved from > 75% to > 97% through adjusting the sorting recipe. 
Besides, the long-term degraded plastics under natural environment were able to be separated from LWP waste: 
the same kind of materials can be classified according to their origin (LWP or after long-term degradation), which 
makes a quality control possible and enables an extra treatment for degraded plastics.   

1. Introduction 

Plastic is one of the most crucial and frequently used materials and is 
applied in almost all industries (Ashurst, 2016). In 2019, 368 million 
tons of plastics were produced worldwide and the production amount is 
still increasing (PlasticsEurope, 2020). The high amount plastic pro
duction and consumption lead to different environmental problems such 
as landfilling and ocean pollution. In 2015, about 6,300 million metric 
tons of plastic waste was generated, however, only 21 wt% was recycled 
or energetically recovered and the other 79 wt% was accumulated in 
landfills or the natural environment (Geyer et al., 2017). As a large-scale 
plastic production dates back to the 1950s (Geyer et al., 2017), the 
caused environmental problems need an urgent treatment. To achieve a 
sustainable development and intact environments for future genera
tions, plastic waste streams need to be minimized and adequately 
treated with minimal environmental footprints by following suitable 

strategies of the circular economy through (i) avoiding unwanted plastic 
leakage, and (ii) enhancing material recovery by minimizing plastic 
landfilling and shifting towards closed material cycles wherever possible 
(Kirchherr et al., 2017; ten Brink et al., 2018). 

Ocean clean-ups (Hee et al., 2021) and (enhanced) landfill mining 
(Jones et al., 2013; Vollprecht et al., 2021) are suitable measures to 
remove existing plastic pollution and avoid further plastic accumulation 
and damage to the environment. Ideally, recovered plastics from such 
measures could not only be made harmless but also reprocessed and 
further utilized to gain additional environmental benefits by reintro
ducing recovered plastics as secondary raw materials into the anthro
pogenic material cycle (Jones et al., 2013). Reprocessing of excavated 
waste and marine litter can be conducted with means of (i) mechanical 
recycling, (ii) chemical recycling, and (iii) energy recovery, depending 
on specific characteristics of the recovered plastics (Osterath, 2020). 

According to life cycle analysis, mechanical recycling is the most 
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efficient and environmental friendly treatment for plastic waste 
(Osterath, 2020). Studies have confirmed that mechanical recycling of 
excavated plastic waste is possible, if quality requirements (such as low 
degradation and limited contamination level of the considered plastics) 
are fulfilled (Canopoli et al., 2018). Furthermore, upcycling through 
pyrolysis is an alternative option for excavated plastics and marine litter, 
which requires a series of extra pretreatments (Breyer et al., 2017; Hee 
et al., 2021). In the case of a long-term degradation of plastics with high 
impurities, only energetic recovery is possible due to suboptimal ma
terial characteristics, high material contamination and degradation 
levels (Bosmans et al., 2013; Canopoli et al., 2018; Quaghebeur et al., 
2013; Zhou et al., 2014). 

Excavated landfill waste and waste from ocean clean-ups are het
erogeneous mixes of different materials with often high impurity con
tents (Garcia Lopez et al., 2018). Thus, it is necessary to generate plastic 
preconcentrates that meet the aforementioned minimum quality re
quirements by sorting out impurities and separating different polymer 
types (Canopoli et al., 2018). As different plastic articles may have 
different retention times in the natural environments (i.e., different time 
intervals from landfilling/leakage until excavation/recovery) and may 
have been exposed to different degradation processes during those 
retention times, the degradation level of different plastics articles from 
similar recovery times may vary strongly. Besides, the radiation degra
dation induced by ultraviolet radiation (UV) (e.g., for marine litter) is 
not negligible (Celina, 2013), and the existence of residues, additives, or 
metals (e.g., for landfill plastics) may accelerate/initiate plastic degra
dation. Depending on the environment, different kinds of degradation 
(e.g., photodegradation, auto-oxidative degradation, thermooxidative 
degradation, thermal degradation, and biodegradation) occur: under 
specific conditions, polymers are broken down into shorter chains 
(mainly by microorganism enzymes) or new chemical bonds (e.g., 
ROOH) are formed (mainly initiated by UV and heat) (Canopoli et al., 
2018). Therefore, separating plastic articles with lower degradation 
degrees (suitable for mechanical recycling) from plastic articles with 
higher degradation degrees (not suitable for mechanical recycling) is 
necessary. 

1.1. Sensor-based plastic sorting 

For commingled plastic waste, industrial-scale sorting of plastics by 
polymer type and impurity removal has been state-of-the-art for more 
than two decades (Feil and Pretz, 2020). This existing infrastructure 
could also be used for the pretreatment of excavated landfill waste (Maul 
et al., 2014) and plastic waste from ocean clean-ups. Modern sorting 
plants for post-consumer commingled plastic waste consist of several 
preconditioning steps (e.g., shredding, sieving, wind-shifting, magnet 
sorting and eddy current separation), followed by cascade of sensor- 
based sorters which separate different polymer types and remove im
purities on the basis of material-specific near-infrared (NIR) spectra (Feil 
and Pretz, 2020). Modern sorting plants often contain more than 20 
sensor-based sorters that separate commonly used plastics such as 
polyethylene terephthalate (PET), polyethylene (PE), polypropylene 
(PP), and polystyrene (PS). Sophisticated sorting recipes, task-specific 
classification algorithms and machine settings allow state-of-the-art 
sensor-based sorters to achieve high yields and purities of the gener
ated preconcentrates (Gundupalli Paulraj et al., 2016). 

Studies have confirmed that sorting of landfill material and marine 
litter with NIR spectroscopy is possible with specific self-developed 
sorting recipes trained with spectra of degraded plastics (Hee et al., 
2021; Küppers et al., 2019a). However, the NIR-spectra of degraded 
samples may differ from that of non-degraded post-consumer plastics, 
which would reduce the sensor-based sorting performance and make it 
necessary to adapt existing sorting recipes used in state-of-the-art sort
ing plants. Furthermore, due to the short life-cycle times of (non- 
degraded) post-consumer plastics, separating plastics based on their 
degradation level is currently not applied in modern lightweight 

packaging (LWP) sorting plants. Therefore, it is necessary to research (i) 
how the NIR spectra change through natural degradation processes, (ii) 
how these changes influence the classification and sorting performance 
with existing sorting infrastructure for post-consumer plastics, and (iii) 
whether sensor-based differentiation between degraded and non- 
degraded plastics is possible. 

1.2. Related work 

Detection and classification of plastic aging/degradation under lab
oratory condition with NIR spectroscopy was investigated by several 
studies (Alassali et al., 2018, 2020; Chen et al., 2021). In these studies, 
the aging process of virgin plastics was conducted by thermally driven 
degradation process under laboratory conditions. It was determined that 
the aging of plastic samples was able to be detected through NIR spectral 
analysis (Alassali et al., 2018) and the predicted aging level of the 
samples had a good collinearity to aging time (Alassali et al., 2020). 
Chen et al. (2021) showed that the degradation of bioplastics under 
laboratory conditions was possible to be detected and a classification of 
degraded and non-degraded polylactic acid samples was achievable. 

However, Celina (2013) indicated that the accelerated aging/ 
degradation processes under laboratory conditions and natural ambient 
environmental conditions can be greatly different and show different 
degradation influence on plastic samples. Furthermore, the contamina
tion on plastic surface during the natural degradation process could 
influence the detection, as surface conditions influence the NIR-based 
detection and classification (Küppers et al., 2019b). This difference 
was confirmed by Signoret et al. (2020a,b) through comparing the mid- 
infrared spectra of accelerated and natural photodegradation of plastics. 
Reviewing the aforementioned studies shows that there is a research gap 
of investigating the detectability of samples which were degraded under 
natural ambient environmental conditions with NIR spectroscopy. 

1.3. Aim and scope 

In this study, the possibility to detect the degradation of plastic waste 
under natural circumstances is investigated with NIR spectroscopy. For 
this purpose, samples which were collected from LWP sorting plant, 
landfill site and marine litter were analyzed. The classification algo
rithms were trained with valuable LWP materials which were collected 
from LWP sorting plants to simulate state-of-the-art sorting plant recipe 
for LWP sorting. Through pixel-based classification analysis, the possi
bility to sort landfill and marine litter plastic waste with currently 
applied sorting recipes in LWP sorting plants was determined. In addi
tion, the possibility for separation of LWP waste and degraded plastics 
was investigated. 

2. Materials and methods 

2.1. Materials 

To investigate different degradation levels, post-consumer LWP 
plastic waste with short lifetime, landfill plastics, and marine litter were 
analyzed. For an accurate comparison of the spectra, the valuable 3D 
material fractions for sorting plants (PET, PE, PP, and PS) from all three 
origins were analyzed. 

Post-consumer plastic waste was collected from the product fractions 
of the lightweight packaging sorting plant Hündgen Entsorgungs GmbH 
& Co. KG (Swisttal, Germany). As more product fractions can be 
generated in sorting plants, all possible product fractions (beverage 
cartons (BC) and paper and cardboard (PPC) in addition to PET, PE, PP 
and PS) were used for training algorithms to avoid incorrect classifica
tion of samples to other production fractions. Detailed information of 
the LWP sampling and preprocessing steps can be found in (Kroell et al., 
2021). 

Landfill mining plastics were excavated from the landfill site at the 
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municipality of Mont-Saint-Guibert (Walloon Bravant, Belgium). The 
excavated waste was deposited between 1958 and 1985, i.e. the samples 
were degraded for more than 30 years. After excavation, the materials 
were fed into a ballistic separator to separate 2D and 3D plastics and 
then dried under laboratory conditions to exclude influence from water, 
as water may influence the NIR spectra (Küppers et al., 2019b). Detailed 
information of the landfill site and preprocessing steps of the landfill 
mining materials can be found in (Garcia Lopez et al., 2018). 

Plastics from marine litter were collected from the islands Sylt and 
Norderney at the North Sea in Germany. The samples were washed up on 
the beach and randomly selected. Details to sampling site and collection 
process can be found in (Hee et al., 2021). 

All the materials used in this study are in their original state, and 
plastics from landfill mining and marine litter were degraded under 
different conditions. The materials were manually sorted according to 
polymer type, and for each material type, 10 to 15 samples were 
randomly selected from each origin for further investigation. 

2.2. Test rig 

The capturing of NIR spectra was conducted with a Helios-G2-320 
NIR sensor from EVK DI Kerschhaggl GmbH (Raaba, Austria). The 
spectral range was approx. 930 nm to 1700 nm with a spectral resolution 
of 3.1 nm/band. Four halogen lamps with a power of 400 W each were 
used as emitters. The reflection of radiation from the surface is captured 
by the NIR sensor, as shown in Fig. 1. With a belt width of 400 mm, the 
achieved spatial resolution is 1.25 mm/pixel. 

2.3. Data analysis 

The spectral data of all the samples was analyzed with self-developed 
analysis programs. For each kind of sample from different origins, the 
spectra data were extracted and saved in individual data frames. 
Depending on the classification cases, different data frames were used 
for training and classification. 

2.3.1. Spectra extraction 
For the training, classification and further analysis, spectral data of 

pixels from samples were extracted from background to exclude in
fluences from background. Besides, saving all spectral data of the same 
material from the same origin (LWP, landfill, or marine litter) simplifies 
the determination of pixel-based classification accuracy. 

As some samples are in irregular form and have impurities on the 
surface, an automatic data extraction of object pixels is not possible for 
all samples in the datasets. Transparent samples and impurities on the 
conveyor belt lead to an incorrect automatic detection of the objects. 
Therefore, data extraction of all samples was conducted with a semi- 
automatic process. For each sample, the first derivative of the reflec
tion spectrum of each pixel was firstly calculated, as it better shows the 
change in reflectance intensities. A principle component analysis with a 

component number of 3 was then applied to the first derivative of pixels 
in this sample, through which the three most important principle com
ponents were extracted. These three components are weighted by 6/9, 
2/9 and 1/9 respectively to emphasize the variance explanation by each 
principle component, and accordingly, an grayscale image (for a better 
illustration of the contour, the images in Fig. 2 are shown with color) of 
the sample is generated, as shown Fig. 2 left. For this image, an auto
matic edge detection was conducted and ideally, the objects should be 
detected from background (Fig. 2a). However, for samples in irregular 
shape or are transparent (see Fig. 2b as an example), the object detection 
does not work perfectly due to similar intensities. Depending on the 
object detection results, the user can choose whether a manual selection 
of area of interest is needed. For this purpose, the sample is shown with 
detected edges in blue lines, see Fig. 2 left. In the case that the edge 
detection works (Fig. 2a left), a binary erosion was applied to the 
detected objects to avoid edge pixels. In the case that a manual selection 
is necessary, an area (area with red line as contour) could be selected 
manually by mouse clicks. The overlap of the area from edge detection 
and manually selected area is the area of interest. Like without manual 
selection, a binary erosion was applied to the overlap. In both cases, the 
spectral data of pixels in the area of interest (yellow area in Fig. 2 right) 
were extracted and saved. 

The extracted spectral data from the same materials and the same 
origin were saved as individual data frames and labeled with material 
type, origin and object number. An overview of instance numbers in 
each data set is shown in Table 1. The reason for less pixels for marine 
litter was its smaller object size compared to other two origins. 

2.3.2. Spectra classification 
For the analysis, the first derivative of the spectra data was used to 

enhance the visual resolution and to correct the baseline. Partial least 
square (PLS) algorithm from scikit-learn v0.24.1 (Pedregosa et al., 2011) 
was used for classification, and different component number was used. 
For training PLS algorithms, 1500 pixels each class were randomly 
selected from corresponding materials. For example, to determine the 
classification possibility of degraded samples with currently applied 
sorting recipe in LWP sorting plants, in total 9000 pixels (1500 pixels 
each for PET, PE, PP, PS, BC and PPC) were selected for training process 
and were divided into 70% training and 30% test data. The classification 
possibility and performance were estimated based on the pixel-based 
classification accuracy. 

3. Results and discussion 

The spectra were analyzed firstly to investigate whether there is 
difference between non-degraded samples and samples after long-term 
degradation under natural environment. The samples were then pixel- 
based classified with current recipe from a sorting plant, and it was 
investigated whether it is possible to classify samples with and without 
degradation. 

3.1. Classification of degraded samples with LWP sorting plant recipe 

The spectra of same material type from different origins were 
analyzed firstly. Fig. 3 shows the spectra of PE from different origins as 
an example. From each data frame of different origin, 300 pixels were 
randomly selected, and their mean spectrum and variation of all 300 
pixels are shown. 

Generally, the position of most characteristic peaks did not change, 
and the form of the mean spectra are similar to each other, for example, 
the characteristic positive peak of PE at about 1240 nm and peaks at 
about 1150 nm–1220 nm. However, the level of different peaks shows 
difference and some characteristic peaks become weaker or even dis
appeared. As shown in Fig. 3, the peak of PE from LWP at about 1360 nm 
was much weaker for PE in landfill and disappeared for PE in marine 
litter. The analysis of other material types showed similar results: most Fig. 1. NIR sensor and illumination setup.  
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characteristic peaks kept the same, but the peak intensity has changed. 
For PP, there is little difference in peak position and all the characteristic 
peaks existed but with different intensities. For PS, characteristic peaks 
in the range of 1350 nm–1420 nm disappeared in spectra of both landfill 
and marine litter samples. Besides, marine litter samples showed 
stronger difference to LWP samples in spectra than landfill samples 
despite the existence of impurities (there were more impurities on the 
surface of landfill samples than marine litter samples). The reason of less 

intensity of degraded samples could be the discoloration due to degra
dation or impurities on the surface, and the disappearance of charac
teristic peaks could result from the formation of new functional groups. 
For marine litter, the illustration of UV light may cause the more sig
nificant difference in spectra compared to landfill samples. 

The samples from landfill and marine litter were classified with the 
algorithm trained with samples from the sorting plant. Due to the great 
difference in spectral data of different materials (PET, PE, PP, PS, BC and 
PPC), the accuracy on training data of a PLS algorithm with component 
number of 15 has reached higher than 99.96%. This algorithm was used 
for classifying degraded samples, and the classification accuracy of all 
pixels in each material class from landfill and marine litter is shown in 
Table 2. 

Table 2 shows that the pixel-based classification accuracy corre
sponds to the results of the spectral analysis: great difference in spec
trum led to relatively lower classification accuracy and the classification 
worked well for samples with slight difference in spectra. For example, 
the classification accuracy of PE from marine litter is much lower than 
that of PE from landfill, which may result from the disappearance of the 
characteristic peaks at about 1350 nm. The classification accuracy of PP 
is much higher due to little difference in spectra. Besides, the overall 
classification accuracy of marine litter samples was generally lower than 
that of landfill samples. 

With current sorting recipe, the pixel-based classification accuracy of 
PE and PS from marine litter was relatively low. A more accurate 

Fig. 2. Spectra extraction with self-developed semi-automated process. (a) Data extraction without manual selection; left: automatic object detection result; right: 
extracted area after erosion (in yellow). (b) Data extraction with manual selection; left: automatic object detection result; right: extracted area (in yellow), blue line is 
the automatic detected contour and red line is manual selection. 

Table 1 
Number of extracted pixels from each origin.   

PET PE PP PS BC PPC 

LWP 249,212 312,987 211,057 111,514 19,400 18,702 
Landfill 212,021 290,412 145,545 118,688 – – 
Marine litter 68,000 35,350 18,032 16,802 – –  

Fig. 3. Spectra of PE from different origins. Lines: mean spectrum of all 300 
pixels; Colored range: spectra variation range. 

Table 2 
Pixel-based classification accuracy of samples from different origin with current 
sorting recipe and a PLS component number of 15.  

Origin PET PE PP PS 

LWP  0.998  0.995  0.990  0.997 
Landfill  0.947  0.948  0.995  0.898 
Marine litter  0.901  0.772  0.972  0.755  
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classification and sorting of degraded samples can be achieved by 
training more spectral data from different origins. In the case that the 
training data are randomly selected from the three different origins, a 
pixel-based classification accuracy of higher than 97.2% can be 
achieved. 

3.2. Classification of non– and degraded samples 

To determine the possibility to detect whether the samples are 
degraded (from landfill or marine litter), algorithms were trained with 
samples in the same material but from different origins. For each ma
terial type, five classification algorithms were trained and applied. The 
first algorithms were used to determine the possibility to classify the 
same material from LWP and from landfill, for example, PE was classi
fied to PE from LWP and PE from landfill. The other four algorithms 
were trained to classify samples into: LWP and marine litter; LWP and 
degraded samples (landfill + marine litter); LWP, landfill and marine 
litter; and marine litter and landfill. The pixel-based classification ac
curacy of each material class is shown in Fig. 4. 

Although there is little difference in mean spectra of some materials 
from different origins (for example PP), the pixel-based classification 
accuracy of > 90% in classifying samples from LWP and degraded 
samples show that a classification of non-degraded and under natural 
environment degraded samples is possible. As both samples from landfill 
and marine litter were degraded, a classification between the two classes 
(from landfill and marine litter) was much more difficult with a classi
fication accuracy of < 70%, and the classification accuracy of PP was <
60%. With the increase of the component number for PLS algorithms, 
the accuracy became slightly (about 5%) higher but is still insufficient 
for an accurate classification and sorting of all kinds of valuable 
materials. 

From the classification point of view, a quality control of product 
quality is possible, as the degraded samples could be classified from non- 
degraded samples. However, the sorting of landfill and marine litter is 
not possible due to the low classification accuracy. 

4. Conclusion 

This study investigated the sorting possibility of long-term degraded 
plastics under natural environment: landfill and marine litter with NIR 
spectroscopy. Through spectral analysis, it was determined that the 
degraded samples have most of the characteristic peaks of the non- 
degraded samples, but show slight difference in position and levels of 
specific peaks. Different materials show also difference in spectra to 
various extend. The classification of landfill and marine litter plastics 
with current sorting recipe (algorithms trained with LWP materials) 
achieved a pixel-based classification accuracy of > 75%. Through add
ing spectra of degraded samples to training data, a classification with 
sufficient high accuracy (> 97.2%) is possible. Besides, a classification 
between degraded (landfill and material litter) and non-degraded sam
ples is also achievable with a pixel-based classification accuracy of >
90%. The presented results correspond also to the conclusions from 
other studies that degraded samples are able to be detected with NIR 
spectroscopy and confirmed the degradation of landfill and marine litter 
plastics. 

In practical applications, large scale sorting of landfill materials and 
marine litter in current sorting plant is, from a classification point of 
view, in principle possible. As degraded samples can be separated from 
the non-degraded LWP materials with high classification accuracy, 
different further processing steps for LWP and degraded plastic product 
fraction are theoretically realizable and thus, sorting landfill material 
and marine litter will most likely bring little influence to the sorting 
plant. In further studies, a large scale sorting of landfill and marine litter 
material flows should be conducted in sorting plants for upscaling of the 
presented results, and the quality of production fraction should be 
determined through large-scale sorting trials. 
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